Approximate model predictive control laws for constrained nonlinear discrete-time systems: analysis and offline design

The objective of this work consists in the offline approximation of possibly discontinuous model predictive control laws for nonlinear discrete-time systems, while enforcing hard constraints on state and input variables. Obtaining an offline approximation of the receding horizon control law may lead to a very significant reduction of the online computational burden with respect to algorithms based on iterated optimization, thus allowing the application to fast dynamics plants. The proposed approximation scheme allows to cope with discontinuous control laws, such as those arising from constrained nonlinear finite horizon optimal control problems. A detailed stability analysis of the closed-loop system driven by the approximated state-feedback controller shows that the devised technique guarantees the input-to-state practical stability with respect to the (non-fading) approximation-induced errors. Two examples are provided to show the effectiveness of the method when the approximator is chosen either as a discontinuous nearest point function or as a smooth neural network.

[1]  Dimitri P. Bertsekas,et al.  Separable Dynamic Programming and Approximate Decomposition Methods , 2007, IEEE Transactions on Automatic Control.

[2]  Alberto Bemporad,et al.  Discrete-Time Non-smooth Nonlinear MPC: Stability and Robustness , 2007 .

[3]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[4]  D. Limón,et al.  Input-to-state stable MPC for constrained discrete-time nonlinear systems with bounded additive uncertainties , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[5]  Hannu T. Toivonen,et al.  Neural network approximation of a nonlinear model predictive controller applied to a pH neutralization process , 2005, Comput. Chem. Eng..

[6]  James McNames,et al.  A Fast Nearest-Neighbor Algorithm Based on a Principal Axis Search Tree , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Mayuresh V. Kothare,et al.  An e!cient o"-line formulation of robust model predictive control using linear matrix inequalities (cid:1) , 2003 .

[8]  Eduardo F. Camacho,et al.  Min-max Model Predictive Control of Nonlinear Systems: A Unifying Overview on Stability , 2009, Eur. J. Control.

[9]  Alberto Bemporad,et al.  A survey on explicit model predictive control , 2009 .

[10]  A. Grancharova,et al.  Explicit model predictive control of gas-liquid separation plant , 2003, ECC.

[11]  Yufei Tao,et al.  An efficient cost model for optimization of nearest neighbor search in low and medium dimensional spaces , 2004, IEEE Transactions on Knowledge and Data Engineering.

[12]  Beng Chin Ooi,et al.  iDistance: An adaptive B+-tree based indexing method for nearest neighbor search , 2005, TODS.

[13]  Tor Arne Johansen,et al.  Approximate explicit receding horizon control of constrained nonlinear systems , 2004, Autom..

[14]  Riccardo Scattolini,et al.  Neural Network Implementation of Nonlinear Receding-Horizon Control , 1999, Neural Computing & Applications.

[15]  D. Limón,et al.  Input-to-State Stability: A Unifying Framework for Robust Model Predictive Control , 2009 .

[16]  Christian Böhm,et al.  A cost model for nearest neighbor search in high-dimensional data space , 1997, PODS.

[17]  Efstratios N. Pistikopoulos,et al.  MPC on a chip - Recent advances on the application of multi-parametric model-based control , 2008, Comput. Chem. Eng..

[18]  Alberto Bemporad,et al.  Robust explicit MPC based on approximate multiparametric convex programming , 2004, IEEE Transactions on Automatic Control.

[19]  Thomas Parisini,et al.  A receding-horizon regulator for nonlinear systems and a neural approximation , 1995, Autom..

[20]  Lorenzo Fagiano,et al.  Fast implementation of predictive controllers using SM approximation methodologies , 2007, 2007 46th IEEE Conference on Decision and Control.

[21]  Hannu T. Toivonen,et al.  A neural network model predictive controller , 2006 .

[22]  Colin Neil Jones,et al.  A logarithmic-time solution to the point location problem for parametric linear programming , 2006, Autom..

[23]  Alberto Bemporad,et al.  Min-max control of constrained uncertain discrete-time linear systems , 2003, IEEE Trans. Autom. Control..

[24]  Manfred Morari,et al.  The double description method for the approximation of explicit MPC control laws , 2008, 2008 47th IEEE Conference on Decision and Control.

[25]  D. Mayne,et al.  Optimal control of constrained, piecewise affine systems with bounded disturbances , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[26]  Moritz Diehl,et al.  An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecond range , 2011, Autom..

[27]  Bruce W. Weide,et al.  Optimal Expected-Time Algorithms for Closest Point Problems , 1980, TOMS.

[28]  Ilya V. Kolmanovsky,et al.  An integrated perturbation analysis and Sequential Quadratic Programming approach for Model Predictive Control , 2009, Autom..

[29]  Zoltan K. Nagy,et al.  Using genetic algorithm in robust nonlinear model predictive control , 2001 .

[30]  M. Sanguineti,et al.  Approximating Networks and Extended Ritz Method for the Solution of Functional Optimization Problems , 2002 .

[31]  Lorenzo Fagiano,et al.  Set Membership approximation theory for fast implementation of Model Predictive Control laws , 2009, Autom..

[32]  M. A. Henson,et al.  Receding horizon control and discontinuous state feedback stabilization , 1995 .

[33]  James B. Rawlings,et al.  Discrete-time stability with perturbations: application to model predictive control , 1997, Autom..

[34]  Sylvain Corlay,et al.  A fast nearest neighbor search algorithm based on vector quantization , 2011, ArXiv.

[35]  Eduardo F. Camacho,et al.  Input to state stability of min-max MPC controllers for nonlinear systems with bounded uncertainties , 2006, Autom..

[36]  Mazen Alamir,et al.  Swing-up and stabilization of a Twin-Pendulum under state and control constraints by a fast NMPC scheme , 2008, Autom..

[37]  Thomas Parisini,et al.  Robust Model Predictive Control of Nonlinear Systems With Bounded and State-Dependent Uncertainties , 2009, IEEE Transactions on Automatic Control.

[38]  Thomas Parisini,et al.  Approximate off-line receding horizon control of constrained nonlinear discrete-time systems: Smooth approximation of the control law , 2010, Proceedings of the 2010 American Control Conference.

[39]  Masayuki Fujita,et al.  Approximate robust receding horizon control for piecewise linear systems via orthogonal partitioning , 2003, 2003 European Control Conference (ECC).

[40]  Tor Arne Johansen,et al.  Using hash tables to manage the time-storage complexity in a point location problem: Application to explicit model predictive control , 2011, Autom..

[41]  Frank Allgöwer,et al.  Nonlinear model predictive control : towards new challenging applications , 2009 .

[42]  Lorenzo Fagiano,et al.  Fast Nonlinear Model Predictive Control via Set Membership Approximation: An Overview , 2009 .

[43]  David Q. Mayne,et al.  Correction to "Constrained model predictive control: stability and optimality" , 2001, Autom..

[44]  I. Karafyllis,et al.  Necessary and sufficient conditions for robust global asymptotic stabilization of discrete-time systems , 2006 .

[45]  Manfred Morari,et al.  A Set-Theoretic Method for Verifying Feasibility of a Fast Explicit Nonlinear Model Predictive Controller , 2012 .

[46]  Tongwen Chen,et al.  Explicit robust model predictive control using recursive closed‐loop prediction , 2006 .

[47]  Riccardo Scattolini,et al.  Regional Input-to-State Stability for Nonlinear Model Predictive Control , 2006, IEEE Transactions on Automatic Control.

[48]  Manfred Morari,et al.  Polytopic Approximation of Explicit Model Predictive Controllers , 2010, IEEE Transactions on Automatic Control.

[49]  W. P. M. H. Heemels,et al.  Predictive control of hybrid systems: Input-to-state stability results for sub-optimal solutions , 2009, Autom..

[50]  J. Maciejowski,et al.  Feedback min‐max model predictive control using a single linear program: robust stability and the explicit solution , 2004 .

[51]  Lalo Magni,et al.  Special section technical notes and correspondence. Min-max model predictive control of nonlinear systems using discontinuous feedbacks , 2003, IEEE Trans. Autom. Control..

[52]  A. Grancharova,et al.  Computational Aspects of Approximate Explicit Nonlinear Model Predictive Control , 2007 .

[53]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[54]  Eduardo F. Camacho,et al.  Application of an explicit min-max MPC to a scaled laboratory process , 2005 .

[55]  Alberto Bemporad,et al.  Robust model predictive control: A survey , 1998, Robustness in Identification and Control.

[56]  Manfred Morari,et al.  A Multiresolution Approximation Method for Fast Explicit Model Predictive Control , 2011, IEEE Transactions on Automatic Control.

[57]  M. Morari,et al.  Fast explicit nonlinear model predictive control via multiresolution function approximation with guaranteed stability , 2010 .

[58]  Yasushi Hada,et al.  Constrained Model Predictive Control , 2006 .

[59]  Tor Arne Johansen,et al.  Computation, approximation and stability of explicit feedback min-max nonlinear model predictive control , 2009, Autom..

[60]  Thomas Parisini,et al.  Nonlinear stabilization by receding-horizon neural regulators , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[61]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[62]  Eduardo F. Camacho,et al.  Explicit solution of min-max MPC with additive uncertainties and quadratic criterion , 2006, Syst. Control. Lett..