Quantifying the heritability of glioma using genome-wide complex trait analysis

[1]  L. Morgan,et al.  The epidemiology of glioma in adults: a "state of the science" review. , 2015, Neuro-oncology.

[2]  S. Rosset,et al.  Measuring missing heritability: Inferring the contribution of common variants , 2014, Proceedings of the National Academy of Sciences.

[3]  A. Spurdle,et al.  Most common 'sporadic' cancers have a significant germline genetic component. , 2014, Human molecular genetics.

[4]  J. Barnholtz-Sloan,et al.  The epidemiology of glioma in adults: a "state of the science" review. , 2014, Neuro-oncology.

[5]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[6]  J. Barnholtz-Sloan,et al.  CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. , 2012, Neuro-oncology.

[7]  K. Strauch,et al.  Low penetrance susceptibility to glioma is caused by the TP53 variant rs78378222 , 2013, British Journal of Cancer.

[8]  Naomi R. Wray,et al.  Estimation and partitioning of polygenic variation captured by common SNPs for Alzheimer's disease, multiple sclerosis and endometriosis , 2012, Human molecular genetics.

[9]  P. Visscher,et al.  Genome-wide complex trait analysis (GCTA): methods, data analyses, and interpretations. , 2013, Methods in molecular biology.

[10]  Doug Speed,et al.  Improved heritability estimation from genome-wide SNPs. , 2012, American journal of human genetics.

[11]  Sang Hong Lee,et al.  Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood , 2012, Bioinform..

[12]  S. Moebus,et al.  Die Heinz Nixdorf Recall Studie , 2012, Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz.

[13]  Melissa Bondy,et al.  Chromosome 7p11.2 (EGFR) variation influences glioma risk. , 2011, Human molecular genetics.

[14]  W. G. Hill,et al.  Genome partitioning of genetic variation for complex traits using common SNPs , 2011, Nature Genetics.

[15]  P. Visscher,et al.  Estimating missing heritability for disease from genome-wide association studies. , 2011, American journal of human genetics.

[16]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[17]  P. Visscher,et al.  Common SNPs explain a large proportion of heritability for human height , 2011 .

[18]  G. Reifenberger,et al.  Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[19]  P. Kleihues,et al.  IDH1 Mutations as Molecular Signature and Predictive Factor of Secondary Glioblastomas , 2009, Clinical Cancer Research.

[20]  K. Hoang-Xuan,et al.  Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[21]  Melissa Bondy,et al.  Genome-wide association study identifies five susceptibility loci for glioma , 2009, Nature Genetics.

[22]  Alexander R. Pico,et al.  Variants in the CDKN2B and RTEL1 regions are associated with high grade glioma susceptibility , 2009, Nature Genetics.

[23]  K. Hemminki,et al.  Familial risks in nervous-system tumours: a histology-specific analysis from Sweden and Norway. , 2009, The Lancet. Oncology.

[24]  Emily H Turner,et al.  Targeted Capture and Massively Parallel Sequencing of Twelve Human Exomes , 2009, Nature.

[25]  Tarik Tihan,et al.  Brain tumor epidemiology: Consensus from the Brain Tumor Epidemiology Consortium , 2008, Cancer.

[26]  S. Shete,et al.  GLIOGENE—an International Consortium to Understand Familial Glioma , 2007, Cancer Epidemiology Biomarkers & Prevention.

[27]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[28]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[29]  W. Willett,et al.  A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer , 2007, Nature Genetics.

[30]  P. Fearnhead,et al.  Genome-wide association study of prostate cancer identifies a second risk locus at 8q24 , 2007, Nature Genetics.

[31]  P. Kleihues,et al.  Genetic pathways to primary and secondary glioblastoma. , 2007, The American journal of pathology.

[32]  C. Woods,et al.  A Practical Guide to Human Cancer Genetics , 1993 .

[33]  C. Adair,et al.  Performance measurement in healthcare: part I--concepts and trends from a State of the Science Review. , 2006, Healthcare policy = Politiques de sante.

[34]  Michael Krawczak,et al.  PopGen: Population-Based Recruitment of Patients and Controls for the Analysis of Complex Genotype-Phenotype Relationships , 2006, Public Health Genomics.

[35]  R Holle,et al.  KORA - A Research Platform for Population Based Health Research , 2005, Gesundheitswesen (Bundesverband der Arzte des Offentlichen Gesundheitsdienstes (Germany)).

[36]  C. Gieger,et al.  KORA-gen - Resource for Population Genetics, Controls and a Broad Spectrum of Disease Phenotypes , 2005 .

[37]  S. Batzoglou,et al.  Distribution and intensity of constraint in mammalian genomic sequence. , 2005, Genome research.

[38]  Alain Favier,et al.  The SU.VI.MAX Study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. , 2004, Archives of internal medicine.

[39]  P. Galan,et al.  A Randomized, Placebo-Controlled Trial of the Health Effects of Antioxidant Vitamins and Minerals , 2004 .

[40]  D. Altman,et al.  Measuring inconsistency in meta-analyses , 2003, BMJ : British Medical Journal.

[41]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[42]  J. Pritchard Are rare variants responsible for susceptibility to complex diseases? , 2001, American journal of human genetics.

[43]  C. Amos,et al.  Segregation analysis of cancer in families of glioma patients , 2001, Genetic epidemiology.

[44]  H. Grönberg,et al.  Genetic epidemiology of glioma , 2001, British Journal of Cancer.

[45]  M. Hill A Practical Guide to Human Cancer Genetics , 1993 .

[46]  R. Barnard,et al.  The classification of tumours of the central nervous system. , 1982, Neuropathology and applied neurobiology.