Giant Spontaneous Magnetostriction in MnTe Driven by a Novel Magnetostructural Coupling Mechanism

We present a comprehensive x-ray scattering study of spontaneous magnetostriction in hexagonal MnTe, an antiferromagnetic semiconductor with a Neel temperature of $T_{\mathrm{N}} = 307$ K. We observe the largest spontaneous magnetovolume effect known for an antiferromagnet, reaching a volume contraction of $|\Delta V/V|>7 \times 10^{-3}$. This can be justified semiquantitatively by considering bulk material properties, the spatial dependence of the superexchange interaction, and the geometrical arrangement of magnetic moments in MnTe. The highly unusual linear scaling of the magnetovolume effect with the short-range magnetic correlations, beginning in the paramagnetic state well above $T_{\mathrm{N}}$, points to a novel physical mechanism, which we explain in terms of a trilinear coupling of the elastic strain with superposed distinct domains of the antiferromagnetic order parameter. This novel mechanism for coupling lattice strain to robust short-range magnetic order casts new light on magnetostrictive phenomena and also provides a template by which the exceptional magnetostrictive properties of MnTe might be realized in a wide range of other functional materials.

[1]  Peng Wang,et al.  Multiple Valence Bands Convergence and Localized Lattice Engineering Lead to Superhigh Thermoelectric Figure of Merit in MnTe , 2023, Advanced science.

[2]  Peng Wang,et al.  Lattice Distortions and Multiple Valence Band Convergence Contributing to High Thermoelectric Performance in MnTe. , 2022, Small.

[3]  Taylor D. Sparks,et al.  Real-space visualization of short-range antiferromagnetic correlations in a magnetically enhanced thermoelectric , 2022, Matter.

[4]  D. Vashaee,et al.  Understanding and design of spin-driven thermoelectrics , 2021, Cell Reports Physical Science.

[5]  M. Cinchetti,et al.  Femtosecond phononic coupling to both spins and charges in a room-temperature antiferromagnetic semiconductor , 2021, Physical Review B.

[6]  Shiqing Deng,et al.  Negative thermal expansion in magnetic materials , 2021, Progress in Materials Science.

[7]  Supriyo Bandyopadhyay,et al.  Magnetic straintronics: Manipulating the magnetization of magnetostrictive nanomagnets with strain for energy-efficient applications , 2021, Applied Physics Reviews.

[8]  C. Shuai,et al.  Magnetostrictive alloys: Promising materials for biomedical applications , 2021, Bioactive materials.

[9]  R. Armiento,et al.  Identification of materials with strong magnetostructural coupling using computational high-throughput screening , 2021, 2103.09652.

[10]  Di Li,et al.  High-performance eco-friendly MnTe thermoelectrics through introducing SnTe nanocrystals and manipulating band structure , 2021 .

[11]  J. Zemen,et al.  Multifunctional antiperovskites driven by strong magnetostructural coupling , 2020, npj Computational Materials.

[12]  R. Seshadri,et al.  Structural changes upon magnetic ordering in magnetocaloric AlFe2B2 , 2020, Applied Physics Letters.

[13]  F. Pan,et al.  Origin of magnetovolume effect in a cobaltite , 2020, 2003.07567.

[14]  D. Vashaee,et al.  Paramagnon drag in high thermoelectric figure of merit Li-doped MnTe , 2019, Science Advances.

[15]  Y. Yu,et al.  Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4 , 2019, Science.

[16]  R. Fishman,et al.  Phonons, magnons, and lattice thermal transport in antiferromagnetic semiconductor MnTe , 2019, Physical Review Materials.

[17]  Kang L. Wang,et al.  Planar Hall Effect in Antiferromagnetic MnTe Thin Films. , 2018, Physical review letters.

[18]  Jinfeng Dong,et al.  Lead-free MnTe mid-temperature thermoelectric materials: facile synthesis, p-type doping and transport properties , 2018 .

[19]  Yue Chen,et al.  Performance optimization and single parabolic band behavior of thermoelectric MnTe , 2017 .

[20]  Junyou Yang,et al.  Synergistic effect by Na doping and S substitution for high thermoelectric performance of p-type MnTe , 2017 .

[21]  T. Jungwirth,et al.  Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe , 2015, Nature Communications.

[22]  V. Prakapenka,et al.  DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration , 2015 .

[23]  S. Billinge,et al.  Magnetic structure determination from the magnetic pair distribution function (mPDF): ground state of MnO. , 2014, Acta crystallographica. Section A, Foundations and advances.

[24]  Simon J. L. Billinge,et al.  xPDFsuite: an end-to-end software solution for high throughput pair distribution function transformation, visualization and analysis , 2014, 1402.3163.

[25]  D. Sheptyakov,et al.  Large spontaneous magnetostriction in FeTiO3 and adjustable magnetic configuration in Fe(III)-doped FeTiO3 , 2012 .

[26]  T. Chatterji,et al.  Magnetoelastic effects in multiferroic YMnO3 , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  C. Howard,et al.  A linear-quadratic order parameter coupling model for magnetoelastic phase transitions in Fe1−xO and MnO , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  T. Chatterji,et al.  Magnetoelastic effects in Jahn–Teller distorted CrF2 and CuF2 studied by neutron powder diffraction , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[29]  T. Chatterji,et al.  Magnetoelastic effect in MF2 (M = Mn, Fe, Ni) investigated by neutron powder diffraction , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  J. Betts,et al.  Direct measurement of spin correlations using magnetostriction , 2008 .

[31]  Aphrodite Ktena,et al.  Magnetostriction and magnetostrictive materials for sensing applications , 2007 .

[32]  S J L Billinge,et al.  PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[33]  B. Hennion,et al.  Spin-wave measurements on hexagonal MnTe of NiAs-type structure by inelastic neutron scattering , 2006 .

[34]  M. Rotter,et al.  Magnetostriction in rare-earth based antiferromagnets , 2005 .

[35]  A. Freeman,et al.  Crossroads electronic structure of MnS, MnSe, and MnTe , 2004 .

[36]  Simon J. L. Billinge,et al.  Underneath the Bragg Peaks: Structural Analysis of Complex Materials , 2003 .

[37]  H. Stokes,et al.  INVARIANTS: program for obtaining a list of invariant polynomials of the order‐parameter components associated with irreducible representations of a space group , 2003 .

[38]  W. Paszkowicz,et al.  High Pressure - High Temperature Diffraction Study of MnTe Using Synchrotron Radiation , 1997 .

[39]  D. Jiles The development of highly magnetostrictive rare earth-iron alloys , 1994 .

[40]  A. Globus,et al.  Exchange striction and crystal lattice in domains and domain walls , 1982 .

[41]  D. ter Haar Phonons , 1973, Nature.

[42]  D. Bloch,et al.  Uniaxial Stress Experiments and Magnetoelastic Interactions in Manganese Oxide , 1973 .

[43]  E. A. Neppiras,et al.  Nickel-based magnetostrictive alloys for electromechanical transducers , 1969 .

[44]  D. Sander Magnetostriction and Magnetoelasticity , 2021, Handbook of Magnetism and Magnetic Materials.

[45]  Xiaohao Yang,et al.  Magnetic pair distribution function analysis of local magnetic correlations. , 2014, Acta crystallographica. Section A, Foundations and advances.

[46]  R. Harrison,et al.  Elastic and anelastic relaxations accompanying magnetic ordering and spin-flop transitions in hematite, Fe2O3 , 2013 .

[47]  W. Marsden I and J , 2012 .

[48]  B. Ouladdiaf,et al.  Magnetostructural coupling in ilmenite-type NiTiO3 , 2022, Physical Review B.