Dynamic Resolution in GPU-Accelerated Volume Rendering to Autostereoscopic Multiview Lenticular Displays

The generation of multiview stereoscopic images of large volume rendered data demands an enormous amount of calculations. We propose a method for hardware accelerated volume rendering of medical data sets to multiview lenticular displays, offering interactive manipulation throughout. The method is based on buffering GPU-accelerated direct volume rendered visualizations of the individual views from their respective focal spot positions, and composing the output signal for the multiview lenticular screen in a second pass. This compositing phase is facilitated by the fact that the view assignment per subpixel is static, and therefore can be precomputed. We decoupled the resolution of the individual views from the resolution of the composited signal, and adjust the resolution on-the-fly, depending on the available processing resources, in order to maintain interactive refresh rates. The optimal resolution for the volume rendered views is determined by means of an analysis of the lattice of the output signal for the lenticular screen in the Fourier domain.

[1]  E. Dubois,et al.  The sampling and reconstruction of time-varying imagery with application in video systems , 1985, Proceedings of the IEEE.

[2]  Thomas Hübner,et al.  SINGLE-PASS MULTIVIEW VOLUME RENDERING , 2007 .

[3]  S. R. Lang,et al.  Autostereoscopic 3 D Displayin Laparoscopic SurgeryN , 2001 .

[4]  László Szirmay-Kalos,et al.  Isosurface Ray-casting for Autostereoscopic Displays , 2007 .

[5]  Wojciech Matusik,et al.  3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes , 2004, ACM Trans. Graph..

[6]  Wojciech Matusik,et al.  3D TV , 2004, SIGGRAPH '04.

[7]  Gerard de Haan,et al.  Visual quality assessment of lenticular based 3D-displays , 2005, 2005 13th European Signal Processing Conference.

[8]  A. Boev,et al.  Crosstalk Measurement Methodology for Auto-Stereoscopic Screens , 2007, 2007 3DTV Conference.

[9]  Wojciech Matusik,et al.  3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes , 2004, ACM Trans. Graph..

[10]  M. Halle Autostereoscopic displays and computer graphics , 1997, COMG.

[11]  Damien Maupu,et al.  3D stereo interactive medical visualization , 2005, IEEE Computer Graphics and Applications.

[12]  Wijnand A. IJsselsteijn,et al.  Viewing experience and naturalness of 3D images , 2005, SPIE Optics East.

[13]  Thomas A. DeFanti,et al.  A GPU Sub-pixel Algorithm for Autostereoscopic Virtual Reality , 2007, 2007 IEEE Virtual Reality Conference.

[14]  W. Matusik,et al.  Coding Approaches for End-To-End 3D TV Systems , 2004 .

[15]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[16]  Jörn Ostermann,et al.  AN ASSESSMENT OF 3DTV TECHNOLOGIES , 2006 .

[17]  N. A. Dodgson Autostereo displays: 3D without glasses , 1997 .

[18]  Cees van Berkel,et al.  Image preparation for 3D LCD , 1999 .

[19]  Leonard McMillan,et al.  Dynamically reparameterized light fields , 2000, SIGGRAPH.

[20]  D. W. Parker,et al.  Multiview 3D LCD , 1996, Electronic Imaging.

[21]  Neil A. Dodgson,et al.  Autostereoscopic 3D displays , 2005, Computer.

[22]  Janusz Konrad,et al.  Subsampling models and anti-alias filters for 3-D automultiscopic displays , 2006, IEEE Transactions on Image Processing.

[23]  Tom Duff,et al.  Compositing digital images , 1984, SIGGRAPH.

[24]  Anna Vilanova,et al.  Making Grass and Fur Move , 2006, J. WSCG.