A quantitative comparison of the ontogeny of two closely‐related Upper Devonian phacopid trilobites

The best insight into the development of Devonian phacopids has been obtained from Trimerocephalus lelievrei Cronier & Feist, 1997, a Famennian phacopine from Morocco, where changes in size and shape have been quantified. In this study, a morphometric approach has been used: (1) to retrodeform and then establish patterns of morphological variation in a well preserved but tectonically deformed assemblage belonging to another phacopine species Weyerites ensae (Richter & Richter, 1926), a Famennian phacopine from Thuringia, and (2) to establish patterns of developmental and evolutionary changes within two closely related species: Weyerites ensae and Trimerocephalus lelievrei. The method of retrodeformation using a set of discrete points presumed to be homologous on all studied individuals, has demonstrated that the next analyses are possible on the retrodeformed material as compared to the undeformed material. Morphometric analysis based on outline analysis has permitted demonstration of progressive shape change in agreement with ontogenetic ordination and a comparison of changes in size and shape in Weyerites ensae. The main changes in shape appear to occur in the meraspid period, whereas increase in size takes place mainly in the holaspid period. This pattern, already reported for Trimerocephalus lelievrei, can be generalized for phacopine trilobites from the Late Devonian. Moreover, the comparison of the two ontogenetic trajectories has shown that most of the differences are related to 'structural' changes, probably linked to a relative pre- post-displacement. The results suggest that ecological adaptation may be studied by examining the changes in development that occur within species through time and space.

[1]  F. Raw The Development of Leptoplastus Salteri (Callaway), and of other Trilobites (Olenidæ, Ptychoparidæ, Conocoryphidæ, Paradoxidæ, Phacopidæ, and Mesonacidæ) , 1925, Quarterly Journal of the Geological Society of London.

[2]  C. J. Stubblefield Notes on the Development of a Trilobite, Shumardia pusilla (Sars). , 1926 .

[3]  R. Moore,et al.  Treatise on Invertebrate Paleontology , 1950 .

[4]  H. B. Whittington THE ONTOGENY OF TRILOBITES , 1957 .

[5]  H. Osmólska On some Famennian Phacopinae (Trilobita) from the Holy Cross Mountains (Poland) , 1963 .

[6]  A. S. Hunt Growth, variation, and instar development of an agnostid trilobite , 1967 .

[7]  C. J. Hewett,et al.  Growth and Moulting in the Common Lobster (Homarus Vulgaris Milne-Edwards) , 1974, Journal of the Marine Biological Association of the United Kingdom.

[8]  F. James Rohlf,et al.  Generalization of the Gap Test for the Detection of Multivariate Outliers , 1975 .

[9]  D. Wake,et al.  Size and shape in ontogeny and phylogeny , 1979, Paleobiology.

[10]  K. McNAMARA Paedomorphosis in Middle Cambrian xystridurine trilobites from northern Australia , 1981 .

[11]  Charles R. Giardina,et al.  Elliptic Fourier features of a closed contour , 1982, Comput. Graph. Image Process..

[12]  K. McNAMARA Heterochrony and Phylogenetic Trends , 1982, Paleobiology.

[13]  F. Rohlf,et al.  A COMPARISON OF FOURIER METHODS FOR THE DESCRIPTION OF WING SHAPE IN MOSQUITOES (DIPTERA: CULICIDAE) , 1984 .

[14]  S. Ferson,et al.  Measuring shape variation of two-dimensional outlines , 1985 .

[15]  J. G. Johnson,et al.  Devonian eustatic fluctuations in Euramerica , 1985 .

[16]  Roger L. Kaesler,et al.  Ontogeny and heterochrony in the ostracode Cavellina Coryell from Lower Permian rocks in Kansas , 1986, Paleobiology.

[17]  K. McNAMARA,et al.  THE ROLE OF HETEROCHRONY IN THE EVOLUTION OF CAMBRIAN TRILOBITES , 1986 .

[18]  Kenneth J. McNamara,et al.  A guide to the nomenclature of heterochrony , 1986, Journal of Paleontology.

[19]  L. Ramsköld Heterochrony in Silurian phacopid trilobites as suggested by the ontogeny of Acernaspis , 1988 .

[20]  R. Feist,et al.  Environmentally controlled phyletic evolution, blindness and extinction in Late Devonian tropidocoryphine trilobites , 1989 .

[21]  R. Raff,et al.  Heterochrony: Developmental mechanisms and evolutionary results , 1989 .

[22]  R. Feist The late Devonian trilobite crises , 1991 .

[23]  F. Rohlf,et al.  NTSYS-pc Numerical Taxonomy and Multivariate Analysis System, version 2.1: Owner manual , 1992 .

[24]  James S. Crampton,et al.  Elliptic Fourier shape analysis of fossil bivalves: some practical considerations , 1995 .

[25]  R. Chapman,et al.  Growth and variation in the Silurian proetide trilobite Aulacopleura konincki and its implications for trilobite palaeobiology , 1995 .

[26]  M. Zelditch,et al.  Heterochrony and heterotopy: stability and innovation in the evolution of form , 1996, Paleobiology.

[27]  Sabrina Renaud,et al.  Fourier analysis applied to Stephanomys (Rodentia, Muridae) molars: nonprogressive evolutionary pattern in a gradual lineage , 1996, Paleobiology.

[28]  C. Crônier,et al.  Morphologie et évolution ontogénétique de Trimerocephalus lelievrei nov. sp., premier trilobite phacopidé aveugle du Famennien Nord-Africain , 1997 .

[29]  C. Klingenberg Heterochrony and allometry: the analysis of evolutionary change in ontogeny , 1998, Biological reviews of the Cambridge Philosophical Society.

[30]  C. Crônier,et al.  Ontogeny of Trimerocephalus lelievrei (Trilobita, Phacopida), a representative of the Late Devonian phacopine paedomorphocline: a morphometric approach , 1998, Paleobiology.

[31]  L. H. Smith Species level phenotypic variation in lower Paleozoic trilobites , 1998, Paleobiology.

[32]  C. Crônier Modalités d'évolution phylétique sous contrôle du milleu chez quelques phacopinés (trilobites) néodévoniens , 1999 .

[33]  C. Crônier,et al.  Larval morphology and ontogeny of a late Devonian Phacopid with reduced sight from Thuringia, Germany , 1999, Journal of Paleontology.

[34]  S. Gould Of coiled oysters and big brains: how to rescue the terminology of heterochrony, now gone astray , 2000, Evolution & development.

[35]  C. Crônier,et al.  Evolution et systématique du groupeCryphops (Phacopinae, Trilobita) du Dévonien supérieur , 2000 .

[36]  Miriam Leah Zelditch,et al.  Beyond heterochrony : the evolution of development , 2001 .

[37]  V. Debat,et al.  Ontogenetic and evolutionary patterns of shape differentiation during the initial diversification of Paleocene acarininids (planktonic foraminifera) , 2002, Paleobiology.

[38]  K. McNAMARA Changing Times, Changing Places: Heterochrony and Heterotopy , 2002, Paleobiology.

[39]  P. Courville,et al.  Variations du rythme du développement chez les trilobites Phacopidae néodévoniens , 2003 .