Zero-group-velocity modes in chalcogenide holey photonic-crystal fibers.

We demonstrate that a holey photonic-crystal fiber with chalcogenide-glass index contrast can be designed to have a complete gap at a propagation constant beta = 0 that also extends into the non-zero beta region. This type of bandgap (previously identified only at index contrasts unattainable in glasses) opens up a regime for guiding zero-group-velocity modes not possible in holey fibers with the more common finger-like gaps originating from beta-->infinity. Such modes could be used to enhance nonlinear and other material interactions, such as for hollow-core fibers in gas-sensor applications.

[1]  T. Krauss,et al.  Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth. , 2007, Optics express.

[2]  M. Koshiba,et al.  Air-core photonic band-gap fibers: the impact of surface modes. , 2004, Optics express.

[3]  G. Bouwmans,et al.  High power air-clad photonic crystal fibre laser. , 2003, Optics express.

[4]  M Ibanescu,et al.  Anomalous dispersion relations by symmetry breaking in axially uniform waveguides. , 2004, Physical review letters.

[5]  R. Buczyński Photonic Crystal Fibers , 2004 .

[6]  J. Jensen,et al.  Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[7]  Steven G. Johnson,et al.  Slow-light, band-edge waveguides for tunable time delays. , 2005, Optics express.

[8]  Byeong Ha Lee,et al.  Photonic crystal fiber coupler. , 2002, Optics letters.

[9]  Steven G. Johnson,et al.  Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.

[10]  A. R. McGurn,et al.  Out of Plane Propagation of Electromagnetic Waves in a Two-dimensional Periodic Dielectric Medium , 1994 .

[11]  David J. Richardson,et al.  Chalcogenide holey fibres , 2000 .

[12]  Steven G. Johnson,et al.  Analysis of mode structure in hollow dielectric waveguide fibers. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Y. Arakawa,et al.  Off-plane-angle dependence of photonic band gap in a two-dimensional photonic crystal , 1995, Technical Digest. CLEO/Pacific Rim'95. The Pacific Rim Conference on Lasers and Electro-Optics.

[14]  John D. Joannopoulos,et al.  Existence of a photonic band gap in two dimensions , 1992 .

[15]  M. Notomi,et al.  Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. , 2001, Physical review letters.

[16]  G. Kino,et al.  Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers. , 2004, Optics express.

[17]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[18]  Steven G. Johnson,et al.  Robust design of slow-light tapers in periodic waveguides , 2009 .

[19]  P. Shum,et al.  Improved air-silica photonic crystal with a triangular airhole arrangement for hollow-core photonic bandgap fiber design. , 2005, Optics letters.

[20]  John D. Joannopoulos,et al.  Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides , 2001 .

[21]  Toshihiko Baba,et al.  Slow light in photonic crystals , 2008 .

[22]  David J. Richardson,et al.  Extruded singlemode non-silica glass holey optical fibres , 2002 .

[23]  Steven G. Johnson,et al.  Optical bistability and cutoff solitons in photonic bandgap fibers. , 2004, Optics Express.

[24]  S. Nolte,et al.  High-power air-clad large-mode-area photonic crystal fiber laser , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[25]  Marin Soljacic,et al.  Zero-group-velocity modes in longitudinally uniform waveguides , 2008 .

[26]  Steven G. Johnson,et al.  Photonic-crystal slow-light enhancement of nonlinear phase sensitivity , 2002 .

[27]  Steven G. Johnson,et al.  Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  B. Eggleton,et al.  Tapered photonic crystal fibers. , 2004, Optics express.

[29]  Johann Troles,et al.  Light guidance in new chalcogenide holey fibres from GeGaSbS glass , 2006 .

[30]  D. Allan,et al.  Surface modes in air-core photonic band-gap fibers. , 2004, Optics express.

[31]  P. Roberts,et al.  Robust photonic band gaps for hollow core guidance in PCF made from high index glass. , 2003, Optics express.

[32]  A. Bamberger,et al.  Mathematical analysis of the guided modes of an optical fiber , 1990 .

[33]  C. Cordeiro,et al.  Photonic bandgap with an index step of one percent. , 2005, Optics express.

[34]  M Ibanescu,et al.  Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers. , 2001, Optics express.

[35]  J. Nishii,et al.  Chalcogenide glass fiber with a core-cladding structure. , 1989, Applied optics.

[36]  Knight,et al.  Photonic band gap guidance in optical fibers , 1998, Science.

[37]  F. Benabid,et al.  Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber , 2002, Science.

[38]  Michael Scalora,et al.  Photonic-crystal fiber as a multifunctional optical sensor and sample collector. , 2005, Optics express.

[39]  Steven G. Johnson,et al.  Optical bistability in axially modulated OmniGuide fibers. , 2003, Optics letters.

[40]  Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides , 2005, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[41]  Steven G. Johnson,et al.  The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers. , 2008, Optics express.

[42]  W. Jin,et al.  Design and modeling of a photonic crystal fiber gas sensor. , 2003, Applied optics.

[43]  H. Hamann,et al.  Active control of slow light on a chip with photonic crystal waveguides , 2005, Nature.

[44]  A. Bjarklev,et al.  Gas sensing using air-guiding photonic bandgap fibers , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..