A Bow-Tie Genetic Architecture for Morphogenesis Suggested by a Genome-Wide RNAi Screen in Caenorhabditis elegans

During animal development, cellular morphogenesis plays a fundamental role in determining the shape and function of tissues and organs. Identifying the components that regulate and drive morphogenesis is thus a major goal of developmental biology. The four-celled tip of the Caenorhabditis elegans male tail is a simple but powerful model for studying the mechanism of morphogenesis and its spatiotemporal regulation. Here, through a genome-wide post-embryonic RNAi-feeding screen, we identified 212 components that regulate or participate in male tail tip morphogenesis. We constructed a working hypothesis for a gene regulatory network of tail tip morphogenesis. We found regulatory roles for the posterior Hox genes nob-1 and php-3, the TGF-β pathway, nuclear hormone receptors (e.g. nhr-25), the heterochronic gene blmp-1, and the GATA transcription factors egl-18 and elt-6. The majority of the pathways converge at dmd-3 and mab-3. In addition, nhr-25 and dmd-3/mab-3 regulate each others' expression, thus placing these three genes at the center of a complex regulatory network. We also show that dmd-3 and mab-3 negatively regulate other signaling pathways and affect downstream cellular processes such as vesicular trafficking (e.g. arl-1, rme-8) and rearrangement of the cytoskeleton (e.g. cdc-42, nmy-1, and nmy-2). Based on these data, we suggest that male tail tip morphogenesis is governed by a gene regulatory network with a bow-tie architecture.

[1]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[2]  J. Sulston,et al.  Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. , 1977, Developmental biology.

[3]  J. Sulston,et al.  The Caenorhabditis elegans male: postembryonic development of nongonadal structures. , 1980, Developmental biology.

[4]  J. Hodgkin A genetic analysis of the sex-determining gene, tra-1, in the nematode Caenorhabditis elegans. , 1987, Genes & development.

[5]  J. Hodgkin,et al.  mab-3, a gene required for sex-specific yolk protein expression and a male-specific lineage in C. elegans , 1988, Cell.

[6]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[7]  M. Conrad The geometry of evolution. , 1990, Bio Systems.

[8]  J. Hodgkin,et al.  Molecular analysis of the C. elegans sex-determining gene tra-1: A gene encoding two zinc finger proteins , 1992, Cell.

[9]  R. Klausner,et al.  ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[10]  H. Horvitz,et al.  The C. elegans gene lin-44, which controls the polarity of certain asymmetric cell divisions, encodes a Wnt protein and acts cell nonautonomously , 1995, Cell.

[11]  J. Ahringer,et al.  PTL-1, a microtubule-associated protein with tau-like repeats from the nematode Caenorhabditis elegans. , 1996, Journal of cell science.

[12]  S. Schmid,et al.  Dynamin GTPase, a force‐generating molecular switch , 1996, BioEssays : news and reviews in molecular, cellular and developmental biology.

[13]  J. McDermott,et al.  ptl-1, a Caenorhabditis elegans gene whose products are homologous to the tau microtubule-associated proteins. , 1996, Biochemistry.

[14]  N. Perrimon,et al.  The nuclear hormone receptor Ftz-F1 is a cofactor for the Drosophila homeodomain protein Ftz , 1997, Nature.

[15]  D. Fitch Evolution of male tail development in rhabditid nematodes related to Caenorhabditis elegans. , 1997, Systematic biology.

[16]  J. Gerhart,et al.  Cells, embryos, and evolution: toward a cellular and developmental understanding of phenotypic variation and evolutionary adaptability , 1997 .

[17]  Susan J. Brown,et al.  The nuclear receptor homologue Ftz-F1 and the homeodomain protein Ftz are mutually dependent cofactors , 1997, Nature.

[18]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[19]  J. Bonner Cells, embryos, and evolution: Toward a cellular and developmental understanding of phenotypic variation and evolutionary adaptability , 1998 .

[20]  R. Iyengar,et al.  Modes of interactions between signaling pathways. , 1998, Biochemical pharmacology.

[21]  C. S. Raymond,et al.  Evidence for evolutionary conservation of sex-determining genes , 1998, Nature.

[22]  Craig T. Woodard,et al.  The Drosophila beta FTZ-F1 orphan nuclear receptor provides competence for stage-specific responses to the steroid hormone ecdysone. , 1999, Molecular cell.

[23]  D. Hall,et al.  Morphogenesis of the Caenorhabditis elegans male tail tip. , 1999, Developmental biology.

[24]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[25]  D. Fitch Evolution of "rhabditidae" and the male tail. , 2000, Journal of nematology.

[26]  M. Freeman Feedback control of intercellular signalling in development , 2000, Nature.

[27]  P. Zipperlen,et al.  Functional genomic analysis of C. elegans chromosome I by systematic RNA interference , 2000, Nature.

[28]  W. B. Wood,et al.  Caenorhabditis elegans embryonic axial patterning requires two recently discovered posterior-group Hox genes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[29]  A. Sluder,et al.  nhr-25, the Caenorhabditis elegans ortholog of ftz-f1, is required for epidermal and somatic gonad development. , 2000, Developmental biology.

[30]  F. Slack,et al.  The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. , 2000, Molecular cell.

[31]  E. Candido,et al.  The NED-8 conjugating system in Caenorhabditis elegans is required for embryogenesis and terminal differentiation of the hypodermis. , 2000, Developmental biology.

[32]  Y. Kohara,et al.  The conserved nuclear receptor Ftz‐F1 is required for embryogenesis, moulting and reproduction in Caenorhabditis elegans , 2000, Genes to cells : devoted to molecular & cellular mechanisms.

[33]  N. Chaffey Red fluorescent protein , 2001 .

[34]  J. Jadrich,et al.  Innexins in C. elegans , 2001, Cell communication & adhesion.

[35]  J. Rothman,et al.  ELT-5 and ELT-6 are required continuously to regulate epidermal seam cell differentiation and cell fusion in C. elegans. , 2001, Development.

[36]  D. Hirsh,et al.  RME-8, a conserved J-domain protein, is required for endocytosis in Caenorhabditis elegans. , 2001, Molecular biology of the cell.

[37]  D. Fitch,et al.  Comparative studies on the phylogeny and systematics of the rhabditidae (nematoda). , 2001, Journal of nematology.

[38]  C. Hunter,et al.  CDC-42 regulates PAR protein localization and function to control cellular and embryonic polarity in C. elegans , 2001, Current Biology.

[39]  Justin P. Kumar,et al.  Signalling pathways in Drosophila and vertebrate retinal development , 2001, Nature Reviews Genetics.

[40]  D. Fitch,et al.  TLP-1 is an asymmetric cell fate determinant that responds to Wnt signals and controls male tail tip morphogenesis in C. elegans. , 2002, Development.

[41]  S. Mango,et al.  Regulation of Organogenesis by the Caenorhabditis elegans FoxA Protein PHA-4 , 2002, Science.

[42]  J. Hodgkin The remarkable ubiquity of DM domain factors as regulators of sexual phenotype: ancestry or aptitude? , 2002, Genes & development.

[43]  Morris F. Maduro,et al.  Cell fates and fusion in the C. elegans vulval primordium are regulated by the EGL-18 and ELT-6 GATA factors -- apparent direct targets of the LIN-39 Hox protein. , 2002, Development.

[44]  Sandhya P Koushika,et al.  Loss of the Putative RNA-Directed RNA Polymerase RRF-3 Makes C. elegans Hypersensitive to RNAi , 2002, Current Biology.

[45]  John White,et al.  The type I membrane protein EFF-1 is essential for developmental cell fusion. , 2002, Developmental cell.

[46]  J. Priess,et al.  Cell polarity and gastrulation in C. elegans. , 2002, Development.

[47]  M. Labouesse [Caenorhabditis elegans]. , 2003, Medecine sciences : M/S.

[48]  Chris Sander,et al.  Characterizing gene sets with FuncAssociate , 2003, Bioinform..

[49]  D. H. Kim,et al.  The Caenorhabditis elegans homologue of Down syndrome critical region 1, RCN-1, inhibits multiple functions of the phosphatase calcineurin. , 2003, Journal of molecular biology.

[50]  J. Doyle,et al.  Bow Ties, Metabolism and Disease , 2022 .

[51]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[52]  D. Hall,et al.  EFF-1 Is Sufficient to Initiate and Execute Tissue-Specific Cell Fusion in C. elegans , 2004, Current Biology.

[53]  M. Hoch,et al.  Gap junction channel protein innexin 2 is essential for epithelial morphogenesis in the Drosophila embryo. , 2004, Molecular biology of the cell.

[54]  W. G. Kelly,et al.  Functional genomic analysis of the ADP‐ribosylation factor family of GTPases: phylogeny among diverse eukaryotes and function in C. elegans , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[55]  Hiroaki Kitano,et al.  Biological robustness , 2008, Nature Reviews Genetics.

[56]  Stephan Ladisch,et al.  Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. , 2004, Nucleic acids research.

[57]  Min Han,et al.  The Caenorhabditis elegans Nuclear Receptor Gene nhr-25 Regulates Epidermal Cell Development , 2004, Molecular and Cellular Biology.

[58]  Karin Kiontke,et al.  The phylogenetic relationships of Caenorhabditis and other rhabditids. , 2005, WormBook : the online review of C. elegans biology.

[59]  Marc Vidal,et al.  Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis , 2005, Nature.

[60]  Viviane Poupon,et al.  The DnaJ-domain Protein RME-8 Functions in Endosomal Trafficking* , 2005, Journal of Biological Chemistry.

[61]  Anna V. Taubenberger,et al.  Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E-cadherin. , 2005, Developmental cell.

[62]  Mark M. Davis,et al.  The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse , 2005, Development.

[63]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[64]  M. Azim Surani,et al.  Blimp1 is a critical determinant of the germ cell lineage in mice , 2005, Nature.

[65]  Joseph C. Pearson,et al.  Modulating Hox gene functions during animal body patterning , 2005, Nature Reviews Genetics.

[66]  H. Kitano,et al.  A comprehensive pathway map of epidermal growth factor receptor signaling , 2005, Molecular systems biology.

[67]  J. Kumar,et al.  Regulation of the retinal determination gene dachshund in the embryonic head and developing eye of Drosophila. , 2006, Developmental biology.

[68]  H. Kitano,et al.  A comprehensive map of the toll-like receptor signaling network , 2006, Molecular systems biology.

[69]  Edgar Rivedal,et al.  Downregulation of gap junctions in cancer cells. , 2006, Critical reviews in oncogenesis.

[70]  Jing Zhao,et al.  Hierarchical modularity of nested bow-ties in metabolic networks , 2006, BMC Bioinformatics.

[71]  H. Kitano,et al.  Robustness trade-offs and host–microbial symbiosis in the immune system , 2006, Molecular systems biology.

[72]  K. Kiontke,et al.  Novel gain-of-function alleles demonstrate a role for the heterochronic gene lin-41 in C. elegans male tail tip morphogenesis. , 2006, Developmental biology.

[73]  Gary Ruvkun,et al.  The mir-84 and let-7 paralogous microRNA genes of Caenorhabditis elegans direct the cessation of molting via the conserved nuclear hormone receptors NHR-23 and NHR-25 , 2006, Development.

[74]  G. Wagner,et al.  The road to modularity , 2007, Nature Reviews Genetics.

[75]  J. Gerhart,et al.  The theory of facilitated variation , 2007, Proceedings of the National Academy of Sciences.

[76]  H. Handa,et al.  Drosophila Blimp-1 Is a Transient Transcriptional Repressor That Controls Timing of the Ecdysone-Induced Developmental Pathway , 2007, Molecular and Cellular Biology.

[77]  T. Tuschl,et al.  Tumorigenesis and Neoplastic Progression MicroRNA-Mediated Down-Regulation of PRDM 1 / Blimp-1 in Hodgkin / Reed-Sternberg Cells : A Potential Pathogenetic Lesion in Hodgkin Lymphomas , 2010 .

[78]  K. Sekiguchi,et al.  Human RME-8 is involved in membrane trafficking through early endosomes. , 2008, Cell structure and function.

[79]  K. Calame,et al.  Regulation and functions of Blimp-1 in T and B lymphocytes. , 2008, Annual review of immunology.

[80]  Douglas S. Portman,et al.  dmd-3, a doublesex-related gene regulated by tra-1, governs sex-specific morphogenesis in C. elegans , 2008, Development.

[81]  D. Wedlich,et al.  Regulated adhesion as a driving force of gastrulation movements , 2008, Development.

[82]  Huey-Ling Kao,et al.  Browsing Multidimensional Molecular Networks with the Generic Network Browser (N‐Browse) , 2008, Current protocols in bioinformatics.

[83]  F. Slack,et al.  The let-7 microRNA interfaces extensively with the translation machinery to regulate cell differentiation , 2008, Cell cycle.

[84]  B. Corominas-Murtra,et al.  On the basic computational structure of gene regulatory networks. , 2009, Molecular bioSystems.

[85]  M. Herman,et al.  The nuclear receptor NHR-25 cooperates with the Wnt/β-catenin asymmetry pathway to control differentiation of the T seam cell in C. elegans , 2009, Journal of Cell Science.

[86]  M. Matzuk LIN28 lets BLIMP1 take the right course. , 2009, Developmental cell.

[87]  S. Pai,et al.  GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation , 2009, Nature Reviews Immunology.

[88]  Hiroaki Kitano,et al.  Robustness and fragility in the yeast high osmolarity glycerol (HOG) signal-transduction pathway , 2009, Molecular systems biology.

[89]  Isabelle S. Peter,et al.  Modularity and design principles in the sea urchin embryo gene regulatory network , 2009, FEBS letters.

[90]  Leslie G. Valiant,et al.  Evolvability , 2009, JACM.

[91]  S. Mango,et al.  The molecular basis of organ formation: insights from the C. elegans foregut. , 2009, Annual review of cell and developmental biology.

[92]  Elliott J. Hagedorn,et al.  UNC-6 (Netrin) Orients the Invasive Membrane of the Anchor Cell in C. elegans , 2008, Nature Cell Biology.

[93]  Yinhua Zhang,et al.  Regulation of endosomal clathrin and retromer‐mediated endosome to Golgi retrograde transport by the J‐domain protein RME‐8 , 2009, The EMBO journal.

[94]  Joseph C. Pearson,et al.  Transcriptional autoregulation in development , 2009, Current Biology.

[95]  M. Mallo,et al.  Hox genes and regional patterning of the vertebrate body plan. , 2010, Developmental biology.

[96]  Bor-Sen Chen,et al.  Identifying Functional Mechanisms of Gene and Protein Regulatory Networks in Response to a Broader Range of Environmental Stresses , 2010, Comparative and functional genomics.

[97]  Axel Bender,et al.  Degeneracy: a design principle for achieving robustness and evolvability. , 2009, Journal of theoretical biology.

[98]  Lila Solnica‐Krezel,et al.  Developmental biology 50 years-investigating the emergence of shape. Introduction. , 2010, Developmental biology.

[99]  Raymond K. Auerbach,et al.  Genome-Wide Identification of Binding Sites Defines Distinct Functions for Caenorhabditis elegans PHA-4/FOXA in Development and Environmental Response , 2010, PLoS genetics.

[100]  Kohei Miyazono,et al.  TGFβ signalling: a complex web in cancer progression , 2010, Nature Reviews Cancer.

[101]  Masayuki Yamamoto,et al.  GATA factor switching during erythroid differentiation , 2010, Current opinion in hematology.

[102]  Robert Tampé,et al.  ABC proteins in antigen translocation and viral inhibition. , 2010, Nature chemical biology.

[103]  Adam C. Martin Pulsation and stabilization: contractile forces that underlie morphogenesis. , 2010, Developmental biology.

[104]  Z. Werb,et al.  GATA3 in development and cancer differentiation: Cells GATA have it! , 2010, Journal of cellular physiology.

[105]  Paolo Tieri,et al.  Network, degeneracy and bow tie. Integrating paradigms and architectures to grasp the complexity of the immune system , 2010, Theoretical Biology and Medical Modelling.