A note about weak epsilon-nets for axis-parallel boxes in d-space

We show the existence of weak @e-nets of size O(1/@eloglog(1/@e)) for point sets and axis-parallel boxes in R^d, for d>=4. Our analysis uses a non-trivial variant of the recent technique of Aronov et al. (2009) [3] that yields (strong) @e-nets, whose size have the above asymptotic bound, for d=2,3.

[1]  Kenneth L. Clarkson,et al.  Improved Approximation Algorithms for Geometric Set Cover , 2007, Discret. Comput. Geom..

[2]  Jirí Matousek,et al.  How to net a lot with little: small ε-nets for disks and halfspaces , 1990, SCG '90.

[3]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[4]  Frank Nielsen,et al.  Dynamic Data Structures for Fat Objects and Their Applications , 1997, WADS.

[5]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[6]  Alon Efrat,et al.  The complexity of the union of (α, β)-covered objects , 1999, SCG '99.

[7]  Leonidas J. Guibas,et al.  Improved bounds on weak ε-nets for convex sets , 1993, STOC.

[8]  Alon Efrat The Complexity of the Union of (alpha, beta)-Covered Objects , 2005, SIAM J. Comput..

[9]  Timothy M. Chan Polynomial-time approximation schemes for packing and piercing fat objects , 2003, J. Algorithms.

[10]  BORIS ARONOV,et al.  Small-size ε-nets for axis-parallel rectangles and boxes , 2009, STOC '09.

[11]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[12]  Micha Sharir,et al.  Small-Size $\eps$-Nets for Axis-Parallel Rectangles and Boxes , 2010, SIAM J. Comput..

[13]  Jirí Matousek,et al.  New Constructions of Weak ε-Nets , 2004, Discret. Comput. Geom..

[14]  Jirí Matousek,et al.  Lower bounds for weak epsilon-nets and stair-convexity , 2008, SCG '09.

[15]  Noga Alon,et al.  A Non-linear Lower Bound for Planar Epsilon-nets , 2010, Discrete & Computational Geometry.

[16]  János Komlós,et al.  Almost tight bounds forɛ-Nets , 1992, Discret. Comput. Geom..

[17]  H. Edelsbrunner,et al.  Improved bounds on weak ε-nets for convex sets , 1995, Discret. Comput. Geom..

[18]  Mark de Berg Improved Bounds on the Union Complexity of Fat Objects , 2005, FSTTCS.

[19]  Jirí Matousek,et al.  Computing many faces in arrangements of lines and segments , 1994, SCG '94.

[20]  Haim Kaplan,et al.  Efficient Colored Orthogonal Range Counting , 2008, SIAM J. Comput..

[21]  Bernard Chazelle,et al.  A deterministic view of random sampling and its use in geometry , 1990, Comb..