Laser photochemistry of selected vibronic and rotational states

[1]  J. Marling Isotope separation of oxygen-17, oxygen-18, carbon-13, and deuterium by ion laser induced formaldehyde photopredissociation , 1977 .

[2]  P. Fairchild,et al.  A photochemical study of rotational state dependence by laser excitation of formaldehyde (? 1A2). I. Coriolis and singlet–triplet perturbation , 1977 .

[3]  Edward K. C. Lee,et al.  Photoexcited chemiluminescence spectroscopy: Detection of hydrogen atoms produced from single vibronic level photolysis of formaldehyde (Ã 1A2) , 1976 .

[4]  Edward K. C. Lee,et al.  Laser induced flourescence emission spectroscopy of H2CO(Ã, 1A2). comparison of the radiative transition rates from two nearly degenerate vibronic levels☆ , 1976 .

[5]  Keiji Morokuma,et al.  MCSCF potential energy surface for photodissociation of formaldehyde , 1976 .

[6]  V. Parker,et al.  Kinetics and mechanisms of the reactions of organic cation radicals and dications. III. Arylation of aromatic hydrocarbon cation radicals , 1976 .

[7]  R. Wightman,et al.  Protonation Kinetics and Mechanism for 1,8-Dihydroxyanthraquinone and Anthraquinone Anion Radicals in Dimethylformamide Solvent , 1976 .

[8]  V. Parker,et al.  Kinetics and mechanisms of the reactions of organic cation radicals and dications. IV. First- and second-order reactions of thianthrene cation radical with phenol , 1976 .

[9]  E. Lieb,et al.  Lower bound to the energy of complex atoms , 1975 .

[10]  John H. Kiefer,et al.  On the preference for vibrational energy in diatomic dissociation , 1975 .

[11]  D. D. Drysdale,et al.  An evaluation of the rate data for the reaction CO + OH → CO2 + H , 1974 .

[12]  R. E. Weston,et al.  Phenomenological manifestations of quantum‐mechanical tunneling. I. Curvature in Arrhenius plots , 1974 .

[13]  E. Yeung,et al.  Predissociation model for formaldehyde , 1974 .

[14]  J. Hemminger,et al.  Laser-excited fluorescence emission from cis and trans isomers of 2,3- and 2,4-dimethylcyclobutanone. Ultra-short-lived excited molecules , 1973 .

[15]  Edward K. C. Lee,et al.  Photolytic and triplet benzene-sensitized decomposition of cis-and trans-2,3- and -2,4-dimethylcyclobutanones , 1972 .

[16]  K. Demerjian,et al.  Photolysis of Formaldehyde as a Hydrogen Atom Source in the Lower Atmosphere , 1972, Science.

[17]  F. Dryer,et al.  Temperature dependence of the reaction CO + OH = CO2 + H , 1971 .

[18]  R. Adams,et al.  Anodic substitution reactions of aromatic hydrocarbon cation radicals. Unequivocal evidence for ECE mechanism , 1969 .

[19]  D. Moule The 3300 Å band system of cyclobutanone , 1969 .

[20]  E. Caldin Tunneling in proton-transfer reactions in solution , 1969 .

[21]  James B. Anderson,et al.  Energy Requirements for the Hydrogen Iodide Reaction , 1968 .

[22]  J. Coetzee,et al.  Dissociation and Homoconjugation of Certain Phenols in Acetonitrile , 1965 .

[23]  J. Sullivan Rates of Reaction of Hydrogen with Iodine , 1959 .

[24]  P. Kusch,et al.  The Magnetic Rotation Spectra of SO2and CS2in the Ultraviolet , 1939 .

[25]  Svante Arrhenius,et al.  Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren , 1889 .

[26]  D. H. Winicur,et al.  Molecular beam investigation of the effect of inner‐shell electrons in molecular collisions , 1975 .

[27]  O. Hammerich,et al.  Kinetics and mechanisms of the reactions of organic cation radicals and dications. II. Anisylation of thianthrene cation radical , 1975 .

[28]  C. Swahn,et al.  Homogeneous Chemical Kinetics at the Rotating Disk Electrode. Application to the Pyridination of Diphenylanthracene Cation Radical. , 1973 .

[29]  E. Yeung Radiative pathways in formaldehyde , 1973 .

[30]  I. Smith,et al.  Rate measurements of reactions of OH by resonance absorption. Part 2.—Reactions of OH with CO, C2H4 and C2H2 , 1972 .

[31]  J. Calvert,et al.  THE PHOTODECOMPOSITION OF CH$sub 2$O, CD$sub 2$O, CHDO, AND CH$sub 2$O-- CD$sub 2$O MIXTURES AT XENON FLASH LAMP INTENSITIES. , 1969 .