Heat Transfer in Rotating Passages With Smooth Walls and Radial Outward Flow

Experiments were conducted to determine the effects of rotation on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a smooth wall, large scale heat transfer model. The objective was to obtain the heat transfer data base required to develop heat transfer correlations and to assess computational fluid dynamic techniques for rotating coolant passages. An analysis of the governing equations showed that four parameters influence the heat transfer in rotating passages (coolant density ratio, Rossby number, Reynolds number and radius ratio). These four parameters were varied over ranges which exceed the ranges of current open literature results, but which are typical of current and advanced gas turbine engine operating conditions. Rotation affected the heat transfer coefficients differently for different locations in the coolant passage. For example, heat transfer at some locations increased with rotation, but decreased and then increased again at other locations. Heat transfer coefficients varied by as much as a factor of 5 between the leading and trailing surfaces for the same test condition and streamwise location. Comparisons with previous results are presented.© 1989 ASME