Flux correction tools for finite elements

Flux correction in the finite element context is addressed. Criteria for positivity of the numerical solution are formulated, and the low-order transport operator is constructed from the discrete high-order operator by adding modulated dissipation so as to eliminate negative off-diagonal entries. The corresponding antidiffusive terms can be decomposed into a sum of genuine fluxes (rather than element contributions) which represent bilateral mass exchange between individual nodes. Thereby, essentially one-dimensional flux correction tools can be readily applied to multidimensional problems involving unstructured meshes. The proposed methodology guarantees mass conservation and makes it possible to design both explicit and implicit FCT schemes based on a unified limiting strategy. Numerical results for a number of benchmark problems illustrate the performance of the algorithm.

[1]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[2]  Masahisa Tabata,et al.  On a conservation upwind finite element scheme for convective diffusion equations , 1981 .

[3]  J. Oden,et al.  A discontinuous hp finite element method for convection—diffusion problems , 1999 .

[4]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[5]  Thomas J. R. Hughes,et al.  A boundary integral modification of the Galerkin least squares formulation for the Stokes problem , 1994 .

[6]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[7]  G. Georghiou,et al.  An Improved Finite-Element Flux-Corrected Transport Algorithm , 1999 .

[8]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[9]  Peter Hansbo,et al.  Discontinuous Galerkin methods for convectiondiffusion problems with arbitrary Péclet number , 2000 .

[10]  Antony Jameson,et al.  Positive schemes and shock modelling for compressible flows , 1995 .

[11]  L. Quartapelle,et al.  An analysis of time discretization in the finite element solution of hyperbolic problems , 1987 .

[12]  J. Boris,et al.  Flux-Corrected Transport , 1997 .

[13]  Alain Dervieux,et al.  Construction of TVD-like Artificial Viscosities on Two-Dimensional Arbitrary FEM Grids , 1993 .

[14]  K. Morgan,et al.  FEM-FCT - Combining unstructured grids with high resolution. [Flux Corrected Transport , 1988 .

[15]  George Em Karniadakis,et al.  The Development of Discontinuous Galerkin Methods , 2000 .

[16]  Vittorio Selmin Finite element solution of hyperbolic equations II. Two dimensional case , 1987 .

[17]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[18]  Stefan Turek,et al.  Efficient Solvers for Incompressible Flow Problems - An Algorithmic and Computational Approach , 1999, Lecture Notes in Computational Science and Engineering.

[19]  Dmitri Kuzmin,et al.  Positive finite element schemes based on the flux-corrected transport procedure , 2001 .

[20]  A. Jameson Computational algorithms for aerodynamic analysis and design , 1993 .

[21]  K. W. Morton,et al.  Numerical methods for fluid dynamics , 1987 .

[22]  J. Peraire,et al.  TVD ALGORITHMS FOR THE SOLUTION OF THE COMPRESSIBLE EULER EQUATIONS ON UNSTRUCTURED MESHES , 1994 .

[23]  Antonio Huerta,et al.  High-order accurate time-stepping schemes for convection-diffusion problems , 2000 .

[24]  Alexander Sokolichin Mathematische Modellbildung und numerische Simulation von Gas-Flüssigkeits-Blasenströmungen , 2004 .

[25]  Tony W. H. Sheu,et al.  High resolution finite-element analysis of shallow water equations in two dimensions , 2001 .

[26]  A. Wathen,et al.  Stabilised finite element methods for steady incompressible flow , 1999 .

[27]  Jay P. Boris,et al.  Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .

[28]  C. R. DeVore,et al.  An Improved Limiter for Multidimensional Flux-Corrected Transport, , 1998 .

[29]  Graham F. Carey,et al.  Least‐squares finite elements for first‐order hyperbolic systems , 1988 .

[30]  J. Peraire,et al.  Finite Element Flux-Corrected Transport (FEM-FCT) for the Euler and Navier-Stokes equations , 1987 .

[31]  Dmitri Kuzmin A high‐resolution finite element scheme for convection‐dominated transport , 2000 .

[32]  J. T. Oden,et al.  Adaptive implicit/explicit finite element method for compressible viscous flows , 1992 .

[33]  Jozef Brilla Error analysis for Laplace transform —Finite element solution of hyperbolic equations , 1983 .

[34]  P. Hansbo Aspects of conservation in finite element flow computations , 1994 .

[35]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .