On progressively censored generalized exponential distribution

In this paper, we consider the statistical inference of the unknown parameters of the generalized exponential distribution in presence of progressive censoring. We obtain maximum likelihood estimators of the unknown parameters using EM algorithm. We also compute the expected Fisher information matrix using the missing value principle. We then use these values to determine the optimal progressive censoring plans. Different optimality criteria are considered, and selected optimal progressive censoring plans are presented. One example has been provided for illustrative purposes.

[1]  T. Louis Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .

[2]  N. Balakrishnan,et al.  Reliability sampling plans for lognormal distribution, based on progressively-censored samples , 2000, IEEE Trans. Reliab..

[3]  N. Balakrishnan,et al.  Progressive Censoring: Theory, Methods, and Applications , 2000 .

[4]  N. Balakrishnan,et al.  Inference for the extreme value distribution under progressive Type-II censoring , 2004 .

[5]  Narayanaswamy Balakrishnan,et al.  Progressive censoring methodology: an appraisal , 2007 .

[6]  Nancy R. Mann,et al.  Best Linear Invariant Estimation for Weibull Parameters Under Progressive Censoring , 1971 .

[7]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[8]  M. J. S. Khan,et al.  A Generalized Exponential Distribution , 1987 .

[9]  Narayanaswamy Balakrishnan,et al.  A Simple Simulational Algorithm for Generating Progressive Type-II Censored Samples , 1995 .

[10]  W. Meeker,et al.  Bayesian life test planning for the Weibull distribution with given shape parameter , 2005 .

[11]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[12]  Narayanaswamy Balakrishnan,et al.  Estimation of parameters from progressively censored data using EM algorithm , 2002 .

[13]  Keming Yu,et al.  Optimum plan for step-stress model with progressive type-II censoring , 2009 .

[14]  Debasis Kundu,et al.  Generalized exponential distribution: Existing results and some recent developments , 2007 .

[15]  Narayanaswamy Balakrishnan,et al.  Interval Estimation of Parameters of Life From Progressively Censored Data , 1994 .

[16]  Debasis Kundu,et al.  On hybrid censored Weibull distribution , 2007 .

[17]  A. Cohen,et al.  Progressively Censored Samples in Life Testing , 1963 .

[18]  Narayanaswamy Balakrishnan,et al.  Optimal Progressive Censoring Plans for the Weibull Distribution , 2004, Technometrics.

[19]  E. Cramer Balakrishnan, Narayanaswamy ; Aggarwala, Rita: Progressive censoring : theory, methods, and applications / N. Balakrishnan ; Rita Aggarwala. - Boston ; Basel ; Berlin, 2000 , 2000 .

[20]  Norman L. Johnson,et al.  Life Testing and Early Failure , 1966 .

[21]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[22]  Debasis Kundu,et al.  On the comparison of Fisher information of the Weibull and GE distributions , 2006 .

[23]  KunduDebasis,et al.  Generalized exponential distribution , 2008 .

[24]  DavidR . Thomas,et al.  Linear Order Statistic Estimation for the Two-Parameter Weibull and Extreme-Value Distributions from Type II Progressively Censored Samples , 1972 .

[25]  J. Lawless Statistical Models and Methods for Lifetime Data , 2002 .

[26]  Martin Abba Tanner,et al.  Tools for Statistical Inference: Observed Data and Data Augmentation Methods , 1993 .

[27]  N. Balakrishnan,et al.  Ch. 14. Point and interval estimation for parameters of the logistic distribution based on progressively type-II censored samples , 2001 .

[28]  D. Kundu,et al.  Theory & Methods: Generalized exponential distributions , 1999 .

[29]  Jerald F. Lawless,et al.  Statistical Models and Methods for Lifetime Data. , 1983 .