Numerical solutions of some nonlinear evolution equations by Chebyshev spectral collocation methods

Chebyshev spectral collocation methods (known as El-Gendi methods—as described by El-Gendi in 1969 and Mihaila and Mihaila in 2002) are presented to deal with some nonlinear evolution equations including the Korteweg–de Vries (KdV), the modified KdV, the mixed KdV and modified KdV, and the generalized fifth-order KdV equations, which include as special cases some well-known equations. The problem is reduced to a system of ordinary differential equations that are solved by combinations of backward differential formulas and appropriate explicit schemes (implicit–explicit BDF methods—as described by Akrivis and Smyrlis in 2004). Good numerical results have been obtained and compared with the exact solutions.

[1]  M. P. Barnett,et al.  Symbolic calculation in chemistry: Selected examples , 2004 .

[2]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[3]  Donald J. Kouri,et al.  Numerical solutions of nonlinear wave equations , 1999 .

[4]  Willy Hereman,et al.  Comment on “A new mathematical approach for finding the solitary waves in dusty plasma” [Phys. Plasmas 5, 3918 (1998)] , 1999 .

[5]  B. Tian,et al.  Macropterons, micropterons and similarity reductions for the regularized Ostrovsky-Grimshaw model for fluids and plasmas with symbolic computation , 2006 .

[6]  P. Drazin,et al.  Solitons: An Introduction , 1989 .

[7]  Zhenya Yan,et al.  Symbolic computation and new families of exact soliton-like solutions to the integrable Broer-Kaup (BK) equations in (2+1)-dimensional spaces , 2001 .

[8]  S. E. El-gendi,et al.  Chebyshev Solution of Differential, Integral and Integro-Differential Equations , 1969, Comput. J..

[9]  Bo Tian,et al.  Generalized hyperbolic-function method with computerized symbolic computation to construct the solitonic solutions to nonlinear equations of mathematical physics , 2001 .

[10]  A. H. Khater,et al.  Bäcklund transformations: exact solutions for the KdV and the Calogero–Degasperis–Fokas mKdV equations , 1998 .

[11]  Bo Tian,et al.  Transformations for a generalized variable-coefficient Korteweg de Vries model from blood vessels, Bose Einstein condensates, rods and positons with symbolic computation , 2006 .

[12]  Gopal Das,et al.  A new mathematical approach for finding the solitary waves in dusty plasma , 1998 .

[13]  David J. Kaup,et al.  On the Inverse Scattering Problem for Cubic Eigenvalue Problems of the Class ψxxx + 6Qψx + 6Rψ = λψ , 1980 .

[14]  Seoung-Hwan Park,et al.  EXTENDED TANH-METHODS AND SOLITONIC SOLUTIONS OF THE GENERAL SHALLOW WATER WAVE MODELS , 2004 .

[15]  A. H. Khater,et al.  Exact solutions for some nonlinear evolution equations which describe pseudo-spherical surfaces , 2006 .

[16]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[17]  P. G. Drazin,et al.  Solitons: Motion picture index , 1989 .

[18]  J. M. Sanz-Serna,et al.  Petrov-Galerkin methods for nonlinear dispersive waves , 1981 .

[19]  Idris Dag,et al.  A small time solutions for the Korteweg-de Vries equation using spline approximation , 2006, Appl. Math. Comput..

[20]  A. H. Khater,et al.  Bäcklund transformations and exact solutions for some nonlinear evolution equations in solar magnetostatic models , 2002 .

[21]  A. H. Khater,et al.  Cnoidal wave solutions for a class of fifth-order KdV equations , 2005, Math. Comput. Simul..

[22]  Bo Tian,et al.  Cylindrical Kadomtsev–Petviashvili model, nebulons and symbolic computation for cosmic dust ion-acoustic waves , 2006 .

[23]  Georgios Akrivis,et al.  Implicit-explicit BDF methods for the Kuramoto-Sivashinsky equation , 2004 .

[24]  A. H. Khater,et al.  Two new classes of exact solutions for the KdV equation via Bäcklund transformations , 1997 .

[25]  Conservation Laws and Exact Solutions for some Nonlinear Partial Differential Equations , 2006 .

[26]  A. H. Khater,et al.  Travelling wave solutions of some classes of nonlinear evolution equations in (1+1) and higher dimensions , 2004, Math. Comput. Simul..

[27]  Travelling And Periodic Wave Solutions Of Some Nonlinear Wave Equations , 2004 .

[28]  Bo Tian,et al.  Cylindrical nebulons, symbolic computation and Bäcklund transformation for the cosmic dust acoustic waves , 2005 .

[29]  Willy Hereman,et al.  Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs , 2002, J. Symb. Comput..

[30]  Gopal Das,et al.  Response to “Comment on ‘A new mathematical approach for finding the solitary waves in dusty plasma’ ” [Phys. Plasmas 6, 4392 (1999)] , 1999 .

[31]  On the Similarity Solutions of the Calogero–Degasperis–Fokas Modified KdV Equation via Symmetry Method , 2003 .

[32]  S. Sawada,et al.  A Method for Finding N-Soliton Solutions of the KdV and KdV-Like Equation , 1974 .

[33]  A. H. Khater,et al.  The tanh method, a simple transformation and exact analytical solutions for nonlinear reaction-diffusion equations , 2002 .

[34]  B. Mihaila,et al.  Numerical approximations using Chebyshev polynomial expansions: El-gendi's method revisited , 1999, physics/9901005.

[35]  A. H. Khater,et al.  Exact Solutions with Jacobi Elliptic Functions of Two Nonlinear Models for Ion-Acoustic Plasma Waves , 2005 .