Random indexing of multidimensional data

[1]  R. Butler,et al.  Challenges and opportunities , 2018, Worldwide Hospitality and Tourism Themes.

[2]  Fredrik Sandin,et al.  Analogical Mapping with Sparse Distributed Memory: A Simple Model that Learns to Generalize from Examples , 2014, Cognitive Computation.

[3]  Fredrik Sandin,et al.  Analogical mapping and inference with binary spatter codes and sparse distributed memory , 2013, The 2013 International Joint Conference on Neural Networks (IJCNN).

[4]  Ioannis Mitliagkas,et al.  Memory Limited, Streaming PCA , 2013, NIPS.

[5]  Yixian Yang,et al.  Web user clustering and Web prefetching using Random Indexing with weight functions , 2012, Knowledge and Information Systems.

[6]  John A Bullinaria,et al.  Extracting semantic representations from word co-occurrence statistics: stop-lists, stemming, and SVD , 2012, Behavior Research Methods.

[7]  Erik Velldal,et al.  Predicting speculation: a simple disambiguation approach to hedge detection in biomedical literature , 2011, J. Biomed. Semant..

[8]  Maria Kvist,et al.  Diagnosis Code Assignment Support Using Random Indexing of Patient Records - A Qualitative Feasibility Study , 2011, AIME.

[9]  Mats Carlsson,et al.  Random Indexing for Finding Similar Nodes within Large RDF graphs , 2011, RED@ESWC.

[10]  Richard G Baraniuk,et al.  More Is Less: Signal Processing and the Data Deluge , 2011, Science.

[11]  Daniel M. Kane,et al.  Sparser Johnson-Lindenstrauss Transforms , 2010, JACM.

[12]  Marco Baroni,et al.  Distributional Memory: A General Framework for Corpus-Based Semantics , 2010, CL.

[13]  Trevor Cohen,et al.  Reflective random indexing for semi-automatic indexing of the biomedical literature , 2010, J. Biomed. Informatics.

[14]  Keith Stevens,et al.  The S-Space Package: An Open Source Package for Word Space Models , 2010, ACL.

[15]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[16]  Patrick Pantel,et al.  From Frequency to Meaning: Vector Space Models of Semantics , 2010, J. Artif. Intell. Res..

[17]  Magnus Sahlgren,et al.  Terminology mining in social media , 2009, CIKM.

[18]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[19]  Keith Stevens,et al.  Event Detection in Blogs using Temporal Random Indexing , 2009 .

[20]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[21]  D. Widdows,et al.  Methodological Review: Empirical distributional semantics: Methods and biomedical applications , 2009 .

[22]  Tim Van de Cruys,et al.  A Non-negative Tensor Factorization Model for Selectional Preference Induction , 2009, Natural Language Engineering.

[23]  Pentti Kanerva,et al.  Hyperdimensional Computing: An Introduction to Computing in Distributed Representation with High-Dimensional Random Vectors , 2009, Cognitive Computation.

[24]  T. Landauer,et al.  Latent semantic analysis , 2008, Scholarpedia.

[25]  Trevor Cohen,et al.  Exploring MEDLINE Space with Random Indexing and Pathfinder Networks , 2008, AMIA.

[26]  Philip S. Yu,et al.  Incremental tensor analysis: Theory and applications , 2008, TKDD.

[27]  Jirí Matousek,et al.  On variants of the Johnson–Lindenstrauss lemma , 2008, Random Struct. Algorithms.

[28]  Dominic Widdows,et al.  Semantic Vectors: a Scalable Open Source Package and Online Technology Management Application , 2008, LREC.

[29]  James R. Curran,et al.  Scaling Distributional Similarity to Large Corpora , 2006, ACL.

[30]  Magnus Sahlgren,et al.  An Introduction to Random Indexing , 2005 .

[31]  George Bebis,et al.  Face recognition experiments with random projection , 2005, SPIE Defense + Commercial Sensing.

[32]  Santosh S. Vempala,et al.  The Random Projection Method , 2005, DIMACS Series in Discrete Mathematics and Theoretical Computer Science.

[33]  Peter Wai-Ming Tsang,et al.  Distributed Representation of Syntactic Structure by Tensor Product Representation and Non-Linear Compression , 2004, AAAI.

[34]  Dmitriy Fradkin,et al.  Experiments with random projections for machine learning , 2003, KDD '03.

[35]  Daniel W. Lozier,et al.  NIST Digital Library of Mathematical Functions , 2003, Annals of Mathematics and Artificial Intelligence.

[36]  Sanjoy Dasgupta,et al.  An elementary proof of a theorem of Johnson and Lindenstrauss , 2003, Random Struct. Algorithms.

[37]  Peter D. Turney Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews , 2002, ACL.

[38]  Magnus Sahlgren,et al.  From Words to Understanding , 2001 .

[39]  Heikki Mannila,et al.  Random projection in dimensionality reduction: applications to image and text data , 2001, KDD '01.

[40]  Samuel Kaski,et al.  Dimensionality reduction by random mapping: fast similarity computation for clustering , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[41]  C. Papadimitriou,et al.  Latent semantic indexing: a probabilistic analysis , 1998, J. Comput. Syst. Sci..

[42]  Andrei Z. Broder,et al.  On the resemblance and containment of documents , 1997, Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171).

[43]  T. Landauer,et al.  A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. , 1997 .

[44]  Curt Burgess,et al.  Producing high-dimensional semantic spaces from lexical co-occurrence , 1996 .

[45]  Pentti Kanerva,et al.  Sparse Distributed Memory , 1988 .

[46]  Peter Frankl,et al.  The Johnson-Lindenstrauss lemma and the sphericity of some graphs , 1987, J. Comb. Theory B.

[47]  Alberto Sillitti,et al.  Failure prediction based on log files using Random Indexing and Support Vector Machines , 2013, J. Syst. Softw..

[48]  Glenn Klimchuk,et al.  Challenges and opportunities , 2011 .

[49]  Hamish Cunningham,et al.  Random Indexing for Searching Large RDF Graphs , 2010 .

[50]  Magnus Sahlgren The Distributional Hypothesis , 2008 .

[51]  P. Kanerva,et al.  Permutations as a means to encode order in word space , 2008 .

[52]  Stephen Clark,et al.  Combining Symbolic and Distributional Models of Meaning , 2007, AAAI Spring Symposium: Quantum Interaction.

[53]  Magnus Sahlgren The Word-Space Model: using distributional analysis to represent syntagmatic and paradigmatic relations between words in high-dimensional vector spaces , 2006 .

[54]  B. Philippe,et al.  Parallel computation of the singular value decomposition , 2003 .

[55]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2001, Springer Series in Statistics.

[56]  Anders Holst,et al.  Random indexing of text samples for latent semantic analysis , 2000 .

[57]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[58]  Michael W. Mahoney Stat260/cs294: Randomized Algorithms for Matrices and Data , 2022 .