Uncertain Nonlinear Process Monitoring Using Interval Ensemble Kernel Principal Component Analysis

To solve uncertainties in industrial processes, interval kernel principal component analysis (IKPCA) has been proposed based on symbolic data analysis. However, it is experimentally discovered that the performance of IKPCA is worse than that of other algorithms. To improve the IKPCA algorithm, interval ensemble kernel principal component analysis (IEKPCA) is proposed. By optimizing the width parameters of the Gaussian kernel function, IEKPCA yields better performances. Ensemble learning is incorporated in the IEKPCA algorithm to build submodels with different width parameters. However, the multiple submodels will yield a large number of results, which will complicate the algorithm. To simplify the algorithm, a Bayesian decision is used to convert the result into fault probability. The final result is obtained via a weighting strategy. To verify the method, IEKPCA is applied to the Tennessee Eastman (TE) process. The false alarm rate, fault detection rate, accuracy, and other indicators used in the IEKPCA are compared with those of other algorithms. The results show that the IEKPCA improves the accuracy of uncertain nonlinear process monitoring.