Satellite-based estimate of the direct and indirect aerosol climate forcing

[1] The main uncertainty in anthropogenic forcing of the Earth's climate stems from pollution aerosols, particularly their “indirect effect” whereby aerosols modify cloud properties. We develop a new methodology to derive a measurement-based estimate using almost exclusively information from an Earth radiation budget instrument (CERES) and a radiometer (MODIS). We derive a statistical relationship between planetary albedo and cloud properties, and, further, between the cloud properties and column aerosol concentration. Combining these relationships with a data set of satellite-derived anthropogenic aerosol fraction, we estimate an anthropogenic radiative forcing of −0.9 ± 0.4 Wm−2 for the aerosol direct effect and of −0.2 ± 0.1 Wm−2 for the cloud albedo effect. Because of uncertainties in both satellite data and the method, the uncertainty of this result is likely larger than the values given here which correspond only to the quantifiable error estimates. The results nevertheless indicate that current global climate models may overestimate the cloud albedo effect.

[1]  M. Perrone,et al.  Monthly-averaged anthropogenic aerosol direct radiative forcing over the Mediterranean based on AERONET aerosol properties , 2008 .

[2]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[3]  Robert F. Cahalan,et al.  3‐D aerosol‐cloud radiative interaction observed in collocated MODIS and ASTER images of cumulus cloud fields , 2007 .

[4]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[5]  U. Lohmann,et al.  Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM , 2007 .

[6]  Yoram J. Kaufman,et al.  On the twilight zone between clouds and aerosols , 2007 .

[7]  Bruce A. Wielicki,et al.  Multi-instrument comparison of top-of-atmosphere reflected solar radiation , 2007 .

[8]  R. Charlson,et al.  On the climate forcing consequences of the albedo continuum between cloudy and clear air , 2007 .

[9]  Ilan Koren,et al.  Smoke and Pollution Aerosol Effect on Cloud Cover , 2006, Science.

[10]  R. Pielke,et al.  Measurement‐based estimation of the spatial gradient of aerosol radiative forcing , 2006 .

[11]  Yoram J. Kaufman,et al.  Disentangling the role of microphysical and dynamical effects in determining cloud properties over the Atlantic , 2006 .

[12]  O. Boucher,et al.  Global estimate of aerosol direct radiative forcing from satellite measurements , 2005, Nature.

[13]  Lorraine Remer,et al.  A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[14]  U. Lohmann,et al.  Constraining the total aerosol indirect effect in the LMDZ and ECHAM4 GCMs using MODIS satellite data , 2005 .

[15]  M. Chin,et al.  Aerosol anthropogenic component estimated from satellite data , 2005 .

[16]  Natividad Manalo-Smith,et al.  Top-of-Atmosphere Direct Radiative Effect of Aerosols over Global Oceans from Merged CERES and MODIS Observations , 2005 .

[17]  O. Boucher,et al.  Constraining the first aerosol indirect radiative forcing in the LMDZ GCM using POLDER and MODIS satellite data , 2005 .

[18]  M. Chin,et al.  A review of measurement-based assessments of the aerosol direct radiative effect and forcing , 2005 .

[19]  Ilan Koren,et al.  The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Brent N. Holben,et al.  An analysis of potential cloud artifacts in MODIS over ocean aerosol optical thickness products , 2005 .

[21]  Meinrat O. Andreae,et al.  Strong present-day aerosol cooling implies a hot future , 2005, Nature.

[22]  David R. Doelling,et al.  Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Terra Satellite. Part II: Validation , 2005 .

[23]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[24]  L. Schüller,et al.  An algorithm for the retrieval of Droplet number concentration and geometrical thickness of stratiform marine boundary layer clouds applied to MODIS radiometric observations , 2005 .

[25]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[26]  Sundar A. Christopher,et al.  Cloud‐free shortwave aerosol radiative effect over oceans: Strategies for identifying anthropogenic forcing from Terra satellite measurements , 2004 .

[27]  U. Lohmann,et al.  Nonlinear Aspects of the Climate Response to Greenhouse Gas and Aerosol Forcing , 2004 .

[28]  Johannes Quaas,et al.  Aerosol indirect effects in POLDER satellite data and the Laboratoire de Météorologie Dynamique–Zoom (LMDZ) general circulation model , 2004 .

[29]  Patrick Minnis,et al.  CERES cloud property retrievals from imagers on TRMM, Terra, and Aqua , 2004, SPIE Remote Sensing.

[30]  Sonoyo Mukai,et al.  A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters , 2003 .

[31]  Reto Knutti,et al.  Climate Forcing by Aerosols--a Hazy Picture , 2003, Science.

[32]  Dana E. Veron,et al.  First measurements of the Twomey indirect effect using ground‐based remote sensors , 2003 .

[33]  David M. Winker,et al.  Mesoscale Variations of Tropospheric Aerosols , 2003 .

[34]  Glen Lesins,et al.  Stronger Constraints on the Anthropogenic Indirect Aerosol Effect , 2002, Science.

[35]  O. Krüger,et al.  The indirect aerosol effect over Europe , 2002 .

[36]  O. Boucher,et al.  A satellite view of aerosols in the climate system , 2002, Nature.

[37]  F. Bréon,et al.  Aerosol Effect on Cloud Droplet Size Monitored from Satellite , 2002, Science.

[38]  Teruyuki Nakajima,et al.  A possible correlation between satellite‐derived cloud and aerosol microphysical parameters , 2001 .

[39]  L. Schüller,et al.  Radiative Properties of Boundary Layer Clouds: Droplet Effective Radius versus Number Concentration , 2000 .

[40]  V. Ramaswamy,et al.  Reply [to “Comments on ‘A limited‐area‐model case study of the effects of sub‐grid scale variations in relative humidity and cloud upon the direct radiative forcing of sulfate aerosol’”] , 1998 .

[41]  Y. Kaufman,et al.  The effect of smoke particles on clouds and climate forcing , 1997 .

[42]  B. Barkstrom,et al.  Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment , 1996 .

[43]  O. Boucher Etude de quelques interactions aerosol-nuage-rayonnement : modelisation et simulations avec un modele de circulation generale , 1995 .

[44]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[45]  S. Twomey Pollution and the Planetary Albedo , 1974 .