Quantum dot semiconductor optical amplifier/silicon external cavity laser for O-band high-speed optical communications

Abstract. We report a hybrid integrated external cavity laser by butt coupling a quantum dot reflective semiconductor optical amplifier and a silicon-on-insulator chip. The device lasers at 1302 nm in the O-band, a wavelength regime critical to data communication systems. We measured 18 mW on-chip output power and over 50-dB side-mode suppression ratio. We also demonstrated open eye diagrams at 10 and 40  Gb/s.

[1]  Gong-Ru Lin,et al.  All‐optical modulation based on silicon quantum dot doped SiOx:Si‐QD waveguide , 2014 .

[2]  Dieter Bimberg,et al.  Quantum dots: promises and accomplishments , 2011 .

[3]  J. Bowers,et al.  Passive microring-resonator-coupled lasers , 2001 .

[4]  Mitsuru Sugawara,et al.  Quantum dot devices: Handling the heat , 2009 .

[5]  M. Yamaguchi,et al.  Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[6]  Z. G. Wang,et al.  Broadband external cavity tunable quantum dot lasers with low injection current density. , 2010, Optics express.

[7]  G. Lo,et al.  A compact and low loss Y-junction for submicron silicon waveguide. , 2013, Optics express.

[8]  Michael Hochberg,et al.  A compact and low-loss silicon waveguide crossing for O-band optical interconnect , 2014, Photonics West - Optoelectronic Materials and Devices.

[9]  John E. Cunningham,et al.  Power-efficient III-V/silicon external cavity DBR lasers. , 2012, Optics express.

[10]  A. Seeds,et al.  1.3µm InAs/GaAs Quantum-Dot Laser Monolithically Grown on Si Substrates Using InAlAs/GaAs Dislocation Filter Layers , 2014, 2014 International Semiconductor Laser Conference.

[11]  J. Fédéli,et al.  Low-Loss ($<$ 1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers , 2010, IEEE Photonics Technology Letters.

[12]  Gong-Ru Lin,et al.  Saturated small-signal gain of Si quantum dots embedded in SiO2/SiOx/SiO2 strip-loaded waveguide amplifier made on quartz , 2009 .

[13]  G. Lo,et al.  A single adiabatic microring-based laser in 220 nm silicon-on-insulator. , 2014, Optics express.

[14]  Michael Hochberg,et al.  High efficiency germanium-assisted grating coupler. , 2014, Optics express.

[15]  Hyundai Park,et al.  1310nm Silicon Evanescent Laser , 2007, 2007 4th IEEE International Conference on Group IV Photonics.

[16]  M. O'Mahony,et al.  Calculation of optical power emitted from a fibre grating laser , 1998 .

[17]  Hong Cai,et al.  Integrated tunable CMOS laser. , 2013, Optics express.

[18]  Lorenzo Pavesi,et al.  Optical gain in silicon nanocrystals , 2001 .

[19]  G. Lo,et al.  A high-responsivity photodetector absent metal-germanium direct contact. , 2014, Optics express.

[20]  Periklis Petropoulos,et al.  High Performance Mach–Zehnder-Based Silicon Optical Modulators , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[21]  D. Van Thourhout,et al.  Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[22]  Lorenzo Pavesi,et al.  Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals , 2003 .

[23]  H. Zimmermann,et al.  Zero-bias 40Gbit/s germanium waveguide photodetector on silicon. , 2012, Optics express.

[24]  Guo-Qiang Lo,et al.  Sagnac loop mirror and micro-ring based laser cavity for silicon-on-insulator. , 2014, Optics express.

[25]  K. Bergman,et al.  Thermal stabilization of a microring modulator using feedback control. , 2012, Optics express.

[26]  A. R. Kovsh,et al.  Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser , 2007 .

[27]  C. Doerr,et al.  Compact polarization rotator on silicon for polarization-diversified circuits. , 2011, Optics letters.

[28]  Alwyn J. Seeds,et al.  1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates , 2011 .

[29]  Shinsuke Tanaka,et al.  High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology. , 2012, Optics express.