Vibration-based MEMS Piezoelectric Energy Harvester for Power Optimization

The simplicity associated with piezoelectric micro-generators makes them very attractive for MEMS applications in which ambient vibrations are harvested and converted into electric energy. These micro-generators can become an alternative to the battery-based solutions in the future, especially for remote systems. In this paper, we propose a model and present the simulation of a MEMS-based energy harvester under ambient vibration excitation using the COVENTORWARE2010 approach. This E-shaped cantilever-based MEMS energy harvester that operates under ambient excitation in frequencies of 28, 29, and 31 Hz within a base acceleration of 1g produces an output power of 0.25 milliwatts at 5kΩ load.

[1]  K. Wasa,et al.  Thin-Film Piezoelectric Materials For a Better Energy Harvesting MEMS , 2012, Journal of Microelectromechanical Systems.

[2]  Skandar Basrour,et al.  Vibration Energy Harvesting with PZT Micro Device , 2009 .

[3]  Robert Puers,et al.  Fabrication, modelling and characterization of MEMS piezoelectric vibration harvesters , 2008 .

[4]  J. Sader,et al.  Method for the calibration of atomic force microscope cantilevers , 1995 .

[5]  J. Park,et al.  Modeling and Characterization of Piezoelectric $d_{33}$ -Mode MEMS Energy Harvester , 2010, Journal of Microelectromechanical Systems.

[6]  Ahmadreza Tabesh,et al.  A Low-Power Stand-Alone Adaptive Circuit for Harvesting Energy From a Piezoelectric Micropower Generator , 2010, IEEE Transactions on Industrial Electronics.

[7]  Jan M. Rabaey,et al.  Improving power output for vibration-based energy scavengers , 2005, IEEE Pervasive Computing.

[8]  Mickaël Lallart,et al.  Switching Delay Effects on Nonlinear Piezoelectric Energy Harvesting Techniques , 2012, IEEE Transactions on Industrial Electronics.

[9]  Chengkuo Lee,et al.  Piezoelectric MEMS Energy Harvester for Low-Frequency Vibrations With Wideband Operation Range and Steadily Increased Output Power , 2011, Journal of Microelectromechanical Systems.

[10]  Skandar Basrour,et al.  Integrated power harvesting system including a MEMS generator and a power management circuit , 2008 .

[11]  Di Chen,et al.  A MEMS-based piezoelectric power generator array for vibration energy harvesting , 2008, Microelectron. J..

[12]  Lu Dong,et al.  Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting , 2006, Microelectron. J..

[13]  C. K. Lee,et al.  Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film , 2009 .

[14]  Othman Sidek,et al.  A review of vibration-based MEMS piezoelectric energy harvesters , 2011 .

[15]  Varalakshmi perumal,et al.  Modeling and Characterization of Piezoelectric Mems Energy Harvester , 2013 .

[16]  H. Wikle,et al.  The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting , 2008 .

[17]  F. Costa,et al.  P2E-3 Power Harvesting Using Piezoelectric MEMS Generator with Interdigital Electrodes , 2007, 2007 IEEE Ultrasonics Symposium Proceedings.

[18]  이윤표,et al.  Modeling and Characterization of Piezoelectric d(33)-Mode MEMS Energy Harvester , 2010 .

[19]  Y. V. Andel,et al.  Vibration energy harvesting with aluminum nitride-based piezoelectric devices , 2009 .

[20]  Wan Y. Shih,et al.  Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers , 2002 .

[21]  Skandar Basrour,et al.  Design and fabrication of piezoelectric micro power generators for autonomous microsystems , 2005 .

[22]  Sang-Gook Kim,et al.  MEMS power generator with transverse mode thin film PZT , 2005 .

[23]  Paul K. Wright,et al.  Alternative Geometries for Increasing Power Density in Vibration Energy Scavenging for Wireless Sensor Networks , 2005 .

[24]  F. Moll,et al.  Optimum Piezoelectric Bending Beam Structures for Energy Harvesting using Shoe Inserts , 2005 .

[25]  Stephen B. Bennett,et al.  Mechanics of Materials , 1905, Nature.

[26]  K. Grosh,et al.  Modeling and Characterization of Cantilever-Based MEMS Piezoelectric Sensors and Actuators , 2012, Journal of Microelectromechanical Systems.