Planck intermediate results L. Evidence of spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB B-mode analysis

The characterization of the Galactic foregrounds has been shown to be the main obstacle in thechallenging quest to detect primordial B -modes in the polarized microwave sky. We make use of the Planck -HFI 2015 data release at high frequencies to place new constraints on the properties of the polarized thermal dust emission at high Galactic latitudes. Here, we specifically study the spatial variability of the dust polarized spectral energy distribution (SED), and its potential impact on the determination of the tensor-to-scalar ratio, r . We use the correlation ratio of the C BB l angular power spectra between the 217 and 353 GHz channels as a tracer of these potential variations, computed on different high Galactic latitude regions, ranging from 80% to 20% of the sky. The new insight from Planck data is a departure of the correlation ratio from unity that cannot be attributed to a spurious decorrelation due to the cosmic microwave background, instrumental noise, or instrumental systematics. The effect is marginally detected on each region, but the statistical combination of all the regions gives more than 99% confidence for this variation in polarized dust properties. In addition, we show that the decorrelation increases when there is a decrease in the mean column density of the region of the sky being considered, and we propose a simple power-law empirical model for this dependence, which matches what is seen in the Planck data. We explore the effect that this measured decorrelation has on simulations of the BICEP2-Keck Array/ Planck analysis and show that the 2015 constraints from these data still allow a decorrelation between the dust at 150 and 353 GHz that is compatible with our measured value. Finally, using simplified models, we show that either spatial variation of the dust SED or of the dust polarization angle are able to produce decorrelations between 217 and 353 GHz data similar to the values we observe in the data.

J. Aumont | L. Montier | J. R. Bond | L. Toffolatti | B. P. Crill | J. E. Gudmundsson | M. Frailis | J. Borrill | A. Gruppuso | E. Hivon | G. Morgante | F. Piacentini | M. Remazeilles | F. Cuttaia | S. Dusini | L. Patrizii | G. Sirri | L. Stanco | O. Dor'e | M. Maris | S. Galeotta | M. Bersanelli | C. Burigana | N. Mandolesi | S. Plaszczynski | L. Pagano | W. C. Jones | G. Polenta | C. A. Oxborrow | G. Maggio | A. Moneti | J. D. McEwen | H. K. Eriksen | C. Dickinson | A. J. Banday | C. R. Lawrence | A. Mennella | P. B. Lilje | D. Herranz | B. D. Wandelt | E. Falgarone | J.-F. Cardoso | K. Ganga | I. K. Wehus | G. Lagache | L. Bonavera | P. Vielva | G. Helou | B. Partridge | X. Dupac | J. P. Rachen | A. Zacchei | D. Maino | B. Comis | L. Perotto | M. Douspis | J. F. Mac'ias-P'erez | J. Delabrouille | S. Matarrese | A. Zonca | T. S. Kisner | N. Krachmalnicoff | E. Calabrese | M. Tomasi | A. H. Jaffe | F. Levrier | H. C. Chiang | S. Mitra | F. Boulanger | P. M. Lubin | A. Gregorio | R. B. Barreiro | D. Scott | A. Ducout | R. Keskitalo | E. Franceschi | M. Le Jeune | C. Baccigalupi | H. U. Norgaard-Nielsen | J. M. Diego | M. Lattanzi | C. Sirignano | M. Kunz | H. Kurki-Suonio | V. Pettorino | A. Renzi | H. Kurki-Suonio | P. Lilje | C. Baccigalupi | K. Benabed | M. Kunz | G. Morgante | M. Douspis | J. Delouis | M. Frailis | A. Zacchei | A. Melchiorri | V. Pettorino | R. G'enova-Santos | J. Rubino-Mart'in | T. Ensslin | E. Hivon | A. Banday | F. Hansen | M. Reinecke | A. Lasenby | B. Wandelt | F. Bouchet | S. Matarrese | J. Borrill | P. Bernardis | A. Jaffe | J. Bond | B. Crill | K. Ganga | W. Jones | F. Piacentini | G. Efstathiou | J. Diego | A. Moss | S. Mitra | J. McEwen | A. Gregorio | Y. Fantaye | M. Ashdown | C. Lawrence | G. Helou | R. Davis | T. Kisner | H. Eriksen | S. Plaszczynski | F. Boulanger | H. Nørgaard-Nielsen | C. Dickinson | J. Aumont | J. Bernard | M. Bersanelli | P. Bielewicz | A. Bonaldi | L. Bonavera | C. Burigana | H. Chiang | L. Colombo | A. Curto | F. Cuttaia | A. Rosa | G. Zotti | J. Delabrouille | O. Dor'e | X. Dupac | E. Falgarone | F. Finelli | A. Fraisse | E. Franceschi | S. Galeotta | M. Giard | J. Gonz'alez-Nuevo | K. M. G'orski | A. Gruppuso | D. Herranz | E. Keihanen | R. Keskitalo | G. Lagache | A. Lahteenmaki | J. Lamarre | M. Jeune | M. Liguori | M. L'opez-Caniego | P. Lubin | J. Mac'ias-P'erez | D. Maino | N. Mandolesi | M. Maris | P. Martin | E. Mart'inez-Gonz'alez | A. Mennella | M. Migliaccio | M. Miville-Deschênes | A. Moneti | P. Naselsky | L. Pagano | D. Paoletti | B. Partridge | O. Perdereau | L. Perotto | G. Polenta | J. Puget | J. Rachen | M. Remazeilles | A. Renzi | G. Rocha | G. Roudier | M. Sandri | A. Suur-Uski | J. Tauber | L. Toffolatti | M. Tomasi | M. Tristram | J. Valiviita | P. Vielva | I. Wehus | A. Zonca | E. Calabrese | F. Elsner | S. Galli | J. Gudmundsson | M. Lattanzi | M. Savelainen | N. Bartolo | J. Cardoso | C. Combet | E. D. Valentino | A. Ducout | M. Gerbino | T. Ghosh | Z. Huang | F. Levrier | G. Maggio | A. Mangilli | M. Rossetti | L. Salvati | T. Trombetti | L. Montier | S. Dusini | L. Stanco | N. Mauri | L. Patrizii | C. Sirignano | G. Sirri | M. Tenti | B. Comis | Planck Collaboration N. Aghanim | A. Bracco | M. Ballardini | S. Basak | A. Frolov | N. Krachmalnicoff | D. Molinari | B. Ruiz-Granados | F. V. Tent | A. Bonaldi | M. Sandri | M. Ashdown | M. Ballardini | N. Bartolo | S. Basak | K. Benabed | J.-P. Bernard | P. Bielewicz | F. R. Bouchet | A. Bracco | L. P. L. Colombo | C. Combet | A. Curto | R. J. Davis | P. de Bernardis | A. de Rosa | G. de Zotti | J.-M. Delouis | E. Di Valentino | G. Efstathiou | F. Elsner | T. A. Ensslin | Y. Fantaye | F. Finelli | A. A. Fraisse | A. Frolov | S. Galli | R. T. G'enova-Santos | M. Gerbino | T. Ghosh | M. Giard | J. Gonz'alez-Nuevo | F. K. Hansen | Z. Huang | E. Keihanen | A. Lahteenmaki | J.-M. Lamarre | A. Lasenby | M. Liguori | M. L'opez-Caniego | A. Mangilli | P. G. Martin | E. Mart'inez-Gonz'alez | N. Mauri | A. Melchiorri | M. Migliaccio | M.-A. Miville-Deschenes | D. Molinari | A. Moss | P. Naselsky | D. Paoletti | O. Perdereau | J.-L. Puget | M. Reinecke | G. Rocha | M. Rossetti | G. Roudier | J. A. Rubino-Mart'in | B. Ruiz-Granados | L. Salvati | M. Savelainen | A.-S. Suur-Uski | J. A. Tauber | M. Tenti | M. Tristram | T. Trombetti | J. Valiviita | J. Vansyngel | F. Van Tent | D. Scott | J. Vansyngel | D. Scott | S. Mitra

[1]  C. A. Oxborrow,et al.  Planck intermediate results: XXXVIII. E- and B-modes of dust polarization from the magnetized filamentary structure of the interstellar medium , 2015, 1505.02779.

[2]  Adrian T. Lee,et al.  A GUIDE TO DESIGNING FUTURE GROUND-BASED COSMIC MICROWAVE BACKGROUND EXPERIMENTS , 2014 .

[3]  G. W. Pratt,et al.  Planck 2015 results Special feature Planck 2015 results XII . Full focal plane simulations , 2016 .

[4]  R. W. Ogburn,et al.  Joint Analysis of BICEP2/Keck Array and Planck Data , 2015, 1502.00612.

[5]  J. Aumont,et al.  Characterization of foreground emission on degree angular scales for CMB B-mode observations: Thermal dust and synchrotron signal from Planck and WMAP data , 2015, 1511.00532.

[6]  R. W. Ogburn,et al.  Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band. , 2016, Physical review letters.

[7]  G. W. Pratt,et al.  Planck 2013 results. XI. All-sky model of thermal dust emission , 2013, 1312.1300.

[8]  J. Aumont,et al.  The pre-launch Planck Sky Model: a model of sky emission at submillimetre to centimetre wavelengths , 2012, 1207.3675.

[9]  V. Pavlidou,et al.  Searching for Inflationary B-modes: Can dust emission properties be extrapolated from 350 GHz to 150 GHz? , 2014, 1410.8136.

[10]  R. B. Barreiro,et al.  Planck intermediate results. XLI. A map of lensing-induced B-modes , 2015, 1512.02882.

[11]  B. Winkel,et al.  COLD MILKY WAY H i GAS IN FILAMENTS , 2016, 1602.07604.

[12]  C. A. Oxborrow,et al.  Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth , 2016, 1605.02985.

[13]  M. Zaldarriaga,et al.  Detecting primordial B-modes after Planck , 2015, 1502.01983.

[14]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[15]  L. Page,et al.  Polarized galactic synchrotron and dust emission and their correlation , 2015, 1509.05934.

[16]  H. K. Eriksen,et al.  Joint Bayesian Component Separation and CMB Power Spectrum Estimation , 2007, 0709.1058.

[17]  G. W. Pratt,et al.  Planck intermediate results XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust , 2014, 1409.6728.

[18]  Clive Dickinson,et al.  Impact on the tensor-to-scalar ratio of incorrect Galactic foreground modelling , 2012, 1203.0152.

[19]  Hiranya V. Peiris,et al.  Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization , 2015, 1509.06770.

[20]  G. W. Pratt,et al.  Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust , 2014, 1405.0871.

[21]  P. Martin,et al.  GHIGLS: H I MAPPING AT INTERMEDIATE GALACTIC LATITUDE USING THE GREEN BANK TELESCOPE , 2015, 1504.07723.

[22]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[23]  G. W. Pratt,et al.  Planck 2015 results Special feature Planck 2015 results VIII . High Frequency Instrument data processing : Calibration and maps , 2016 .

[24]  Michael Seiffert,et al.  Cosmic Microwave Background Component Separation by Parameter Estimation , 2005, astro-ph/0508268.

[25]  G. W. Pratt,et al.  Planck 2015 results - X. Diffuse component separation: Foreground maps , 2015, 1502.01588.

[26]  J. Peek,et al.  Neutral Hydrogen Structures Trace Dust Polarization Angle: Implications for Cosmic Microwave Background Foregrounds. , 2015, Physical review letters.

[27]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[28]  XSPECT, estimation of the angular power spectrum by computing cross-power spectra with analytical error bars , 2004, astro-ph/0405575.

[29]  G. W. Pratt,et al.  Planck intermediate results. XVII. Emission of dust in the diffuse interstellar medium from the far-infrared to microwave frequencies , 2013, 1312.5446.

[30]  G. W. Pratt,et al.  Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization , 2014, 1405.0874.

[31]  C. A. Oxborrow,et al.  Planck intermediate results XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap , 2016, 1604.01029.

[32]  C. A. Oxborrow,et al.  Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds , 2015, 1506.06660.

[33]  C. A. Oxborrow,et al.  Planck intermediate results - XLVII. Planck constraints on reionization history , 2016, 1605.03507.

[34]  C. A. Oxborrow,et al.  Planck 2015 results. VII. High Frequency Instrument data processing: Time-ordered information and beams , 2015 .

[35]  G. W. Pratt,et al.  Planck intermediate results - XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes , 2014, 1409.5738.

[36]  M. Remazeilles,et al.  Sensitivity and foreground modelling for large-scale cosmic microwave background B-mode polarization satellite missions , 2015, 1509.04714.

[37]  G. W. Pratt,et al.  Planck intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence , 2014, 1405.0872.