Multiphysics Fuel Performance Modeling of Dispersed Triso-Coated Particle Fuel Plate Under Long-Time Normal Condition and Accident Conditions

[1]  Wen Jiang,et al.  Modeling fission product diffusion in TRISO fuel particles with BISON , 2021 .

[2]  Wen Jiang,et al.  TRISO particle fuel performance and failure analysis with BISON , 2021 .

[3]  Lei Li,et al.  Modeling of irradiation-induced thermo-mechanical coupling and multi-scale behavior in a fully ceramic-microencapsulated fuel pellet , 2020 .

[4]  G. Su,et al.  Multidimensional multiphysics modeling of TRISO particle fuel with SiC/ZrC coating using modified fission gas release model , 2020 .

[5]  S. Alameri,et al.  Two-Dimensional Full Core Analysis of IFBA-Coated TRISO Fuel Particles in Very High Temperature Reactors , 2020, Volume 1: Beyond Design Basis; Codes and Standards; Computational Fluid Dynamics (CFD); Decontamination and Decommissioning; Nuclear Fuel and Engineering; Nuclear Plant Engineering.

[6]  K. Terrani,et al.  Modeling reactivity insertion experiments of TRISO particles in NSRR using BISON , 2020 .

[7]  S. Alameri,et al.  Preliminary Study of a Prismatic-Core Advanced High-Temperature Reactor Fuel Using Homogenization Double-Heterogeneous Method , 2020, Nuclear Science and Engineering.

[8]  D. Schappel,et al.  Modeling the performance of TRISO-based fully ceramic matrix (FCM) fuel in an LWR environment using BISON , 2018, Nuclear Engineering and Design.

[9]  G. Su,et al.  A comparative study on preliminary performance evaluation of ATFs under normal and accident conditions with FRAP-ATF code , 2018 .

[10]  Y. Kim,et al.  Thermophysical properties of heat-treated U-7Mo/Al dispersion fuel , 2018 .

[11]  Y. Kim,et al.  Thermal properties of U-7Mo/Al dispersion fuel , 2017 .

[12]  B. Spencer,et al.  BISON Theory Manual The Equations behind Nuclear Fuel Analysis , 2016 .

[13]  S. V. D. Berghe,et al.  High burn-up structure of U(Mo) dispersion fuel , 2016 .

[14]  Lei Yang,et al.  Simulation of the In-Pile Behaviors Evolution in Nuclear Fuel Rods with the Irradiation Damage Effects , 2014 .

[15]  Benjamin W. Spencer,et al.  Multidimensional multiphysics simulation of TRISO particle fuel , 2013 .

[16]  S. Ding,et al.  Effects of irradiation hardening and creep on the thermo-mechanical behaviors in inert matrix fuel elements , 2013 .

[17]  David Andrs,et al.  Multidimensional multiphysics simulation of nuclear fuel behavior , 2012 .

[18]  Jeffrey J. Powers,et al.  A review of TRISO fuel performance models , 2010 .

[19]  Daniel M. Wachs,et al.  Transmission electron microscopy characterization of irradiated U–7Mo/Al–2Si dispersion fuel , 2010 .

[20]  Xiaoqin Yan,et al.  Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements , 2009 .

[21]  H. Nabielek,et al.  COATED PARTICLE FUEL FOR HIGH TEMPERATURE GAS COOLED REACTORS , 2007 .

[22]  Gregory K. Miller,et al.  The challenges associated with high burnup, high temperature and accelerated irradiation for TRISO-coated particle fuel , 2007 .

[23]  M. Meyer,et al.  Fuel development for gas-cooled fast reactors , 2006 .

[24]  R. Ballinger,et al.  Development of Improved Models and Designs for Coated-Particle Gas Reactor Fuels -- Final Report under the International Nuclear Energy Research Initiative (I-NERI) , 2004 .

[25]  S. Van den Berghe,et al.  Post-irradiation examination of uranium–7 wt% molybdenum atomized dispersion fuel , 2004 .

[26]  R. Ballinger,et al.  TIMCOAT: An Integrated Fuel Performance Model for Coated Particle Fuel , 2004 .

[27]  Ho Jin Ryu,et al.  Reaction layer growth and reaction heat of U–Mo/Al dispersion fuels using centrifugally atomized powders , 2003 .

[28]  J. Jacoud,et al.  An efficient model for the analysis of fission gas release , 2002 .

[29]  C. Ye China Advanced Research Reactor (CARR): A new reactor to be built in China for neutron scattering studies , 1997 .

[30]  H. Matzke,et al.  A Pragmatic Approach to Modelling Thermal Conductivity of Irradiated UO2 Fuel. Review and Recommendations , 1996 .

[31]  John H. Harding,et al.  A recommendation for the thermal conductivity of UO2 , 1989 .

[32]  Heinz Nabielek,et al.  Production of carbon monoxide during burn-up of UO2 kerneled HTR fuel particles , 1982 .

[33]  H. C. Yeh,et al.  PWR FLECHT SEASET unblocked bundle, forced and gravity reflood task. Data evaluation and analysis report. [PWR] , 1982 .

[34]  D. L. Hagrman,et al.  MATPRO-Version 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior , 1979 .

[35]  P. E. MacDonald,et al.  MATPRO: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior , 1976 .

[36]  G. L. Upham,et al.  Power generation in a BWR following normal shutdown or loss-of-coolant accident conditions. Licensing topical report , 1973 .

[37]  M. Ali,et al.  Homogenization of TRISO Fuel Using Reactivity Equivalent Physical Transformation Method , 2019, Transactions of the American Nuclear Society - Volume 121.

[38]  S. Ding,et al.  Mechanical behaviors of the dispersion nuclear fuel plates induced by fuel particle swelling and thermal effect II : Effects of variations of the fuel particle diameters , 2010 .

[39]  W. Petry,et al.  Test irradiations of full-sized U3Si2–Al fuel plates up to very high fission densities , 2009 .