On regularization with normal solutions in decomposition methods for multistage stochastic programming

We consider well-known decomposition techniques for multistage stochastic programming and a new scheme based on normal solutions for stabilizing calculations as the iteration process progresses. The given algorithms combine ideas from finite perturbation of convex programs and level bundle methods to regularize the so-called forward step of these decomposition methods. In contrast to other regularized approaches for multistage programs, the given algorithms do not suffer from the effect of bad quality incumbent points. We also improve the backward step (that generates cuts, approximating the cost-togo functions) by employing an adaptive partition-based approach to reduce the computational burden. Numerical experiments on a hydrothermal scheduling problem indicate that our second algorithm exhibits significantly faster convergence than the classical Stochastic Dual Dynamic Programming algorithm.

[1]  Susana Scheimberg,et al.  Inexact Bundle Methods for Two-Stage Stochastic Programming , 2011, SIAM J. Optim..

[2]  Yongjia Song,et al.  An Adaptive Partition-based Level Decomposition for Solving Two-stage Stochastic Programs with Fixed Recourse , 2016 .

[3]  Mikhail V. Solodov,et al.  A doubly stabilized bundle method for nonsmooth convex optimization , 2016, Math. Program..

[4]  John R. Birge,et al.  The Abridged Nested Decomposition Method for Multistage Stochastic Linear Programs with Relatively Complete Recourse , 2006, Algorithmic Oper. Res..

[5]  Claudia A. Sagastizábal,et al.  Optimal scenario tree reduction for stochastic streamflows in power generation planning problems , 2010, Optim. Methods Softw..

[6]  Warrren B Powell,et al.  Convergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with Recourse , 1999 .

[7]  M. Tzur,et al.  The multilocation transshipment problem , 2006 .

[8]  Pierre Girardeau,et al.  On the Convergence of Decomposition Methods for Multistage Stochastic Convex Programs , 2015, Math. Oper. Res..

[9]  Ignacio E. Grossmann,et al.  A stochastic programming approach to planning of offshore gas field developments under uncertainty in reserves , 2004, Comput. Chem. Eng..

[10]  K. Kiwiel Finding normal solutions in piecewise linear programming , 1995 .

[11]  Alexander Shapiro,et al.  Conditional Risk Mappings , 2005, Math. Oper. Res..

[12]  M. R. Osborne,et al.  A Descent Algorithm for Minimizing Polyhedral Convex Functions , 1983 .

[13]  Jitka Dupacová,et al.  Asset-liability management for Czech pension funds using stochastic programming , 2009, Ann. Oper. Res..

[14]  J. E. Kelley,et al.  The Cutting-Plane Method for Solving Convex Programs , 1960 .

[15]  Werner Römisch,et al.  Sampling-Based Decomposition Methods for Multistage Stochastic Programs Based on Extended Polyhedral Risk Measures , 2012, SIAM J. Optim..

[16]  C. Lemaréchal An extension of davidon methods to non differentiable problems , 1975 .

[17]  John R. Birge,et al.  Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs , 1985, Oper. Res..

[18]  Alexander Shapiro,et al.  Risk neutral and risk averse Stochastic Dual Dynamic Programming method , 2013, Eur. J. Oper. Res..

[19]  Monia Rekik,et al.  Stochastic dual dynamic programming for transportation planning under demand uncertainty , 2013, 2013 International Conference on Advanced Logistics and Transport.

[20]  Claudia A. Sagastizábal,et al.  The value of rolling-horizon policies for risk-averse hydro-thermal planning , 2012, Eur. J. Oper. Res..

[21]  Jitka Dupa Structure of Risk-Averse Multistage Stochastic Programs , 2013 .

[22]  David P. Morton,et al.  Assessing policy quality in a multistage stochastic program for long-term hydrothermal scheduling , 2017, Ann. Oper. Res..

[23]  Xu Andy Sun,et al.  Nested Decomposition of Multistage Stochastic Integer Programs with Binary State Variables , 2016 .

[24]  S. Granville,et al.  Strategic bidding under uncertainty: a binary expansion approach , 2005, IEEE Transactions on Power Systems.

[25]  C. Lemaréchal Constructing Bundle Methods for Convex Optimization , 1986 .

[26]  David P. Morton,et al.  Stopping Rules for a Class of Sampling-Based Stochastic Programming Algorithms , 1998, Oper. Res..

[27]  Raimund M. Kovacevic,et al.  Tree approximation for discrete time stochastic processes: a process distance approach , 2015, Annals of Operations Research.

[28]  A. Ruszczynski,et al.  Accelerating the regularized decomposition method for two stage stochastic linear problems , 1997 .

[29]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[30]  M. V. F. Pereira,et al.  Multi-stage stochastic optimization applied to energy planning , 1991, Math. Program..

[31]  Steffen Rebennack,et al.  Combining sampling-based and scenario-based nested Benders decomposition methods: application to stochastic dual dynamic programming , 2015, Mathematical Programming.

[32]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[33]  G. Pflug,et al.  Modeling, Measuring and Managing Risk , 2008 .

[34]  Andy Philpott,et al.  On the Convergence of Sampling-Based Decomposition Algorithms for Multistage Stochastic Programs , 2005 .

[35]  Arkadi Nemirovski,et al.  Non-euclidean restricted memory level method for large-scale convex optimization , 2005, Math. Program..

[36]  Bernardo K. Pagnoncelli,et al.  Risk aversion in multistage stochastic programming: A modeling and algorithmic perspective , 2016, Eur. J. Oper. Res..

[37]  Vitor L. de Matos,et al.  Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion , 2012, Eur. J. Oper. Res..

[38]  Claude Lemaréchal,et al.  Convex proximal bundle methods in depth: a unified analysis for inexact oracles , 2014, Math. Program..

[39]  Jitka Dupačová,et al.  Portfolio Optimization and risk management via stochastic programming , 2009 .

[40]  Claudia A. Sagastizábal,et al.  Level bundle methods for oracles with on-demand accuracy , 2014, Optim. Methods Softw..

[41]  J. Dupacová,et al.  Scenario reduction in stochastic programming: An approach using probability metrics , 2000 .

[42]  Krzysztof C. Kiwiel,et al.  Proximal level bundle methods for convex nondifferentiable optimization, saddle-point problems and variational inequalities , 1995, Math. Program..

[43]  Zhihong Zhou,et al.  Multistage Stochastic Decomposition: A Bridge between Stochastic Programming and Approximate Dynamic Programming , 2014, SIAM J. Optim..

[44]  Yurii Nesterov,et al.  New variants of bundle methods , 1995, Math. Program..

[45]  Jitka Dupacová,et al.  Structure of risk-averse multistage stochastic programs , 2015, OR Spectr..

[46]  Werner Römisch,et al.  Scenario Tree Generation for Multi-stage Stochastic Programs , 2011 .

[47]  Alexander Shapiro,et al.  Analysis of stochastic dual dynamic programming method , 2011, Eur. J. Oper. Res..

[48]  Julia L. Higle,et al.  Stochastic Decomposition: An Algorithm for Two-Stage Linear Programs with Recourse , 1991, Math. Oper. Res..

[49]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[50]  James R. Luedtke,et al.  An Adaptive Partition-Based Approach for Solving Two-Stage Stochastic Programs with Fixed Recourse , 2015, SIAM J. Optim..

[51]  A. Ruszczynski On the Regularized Decomposition Method for Stochastic Programming Problems , 1995 .

[52]  Andrew B. Philpott,et al.  On the convergence of stochastic dual dynamic programming and related methods , 2008, Oper. Res. Lett..

[53]  David P. Morton,et al.  Evaluating policies in risk-averse multi-stage stochastic programming , 2014, Mathematical Programming.

[54]  Georg Ch. Pflug,et al.  Version-Independence and Nested Distributions in Multistage Stochastic Optimization , 2009, SIAM J. Optim..

[55]  M. Dempster,et al.  Stochastic optimization methods in finance and energy : new financial products and energy market strategies , 2011 .

[56]  Werner Römisch,et al.  Polyhedral Risk Measures in Stochastic Programming , 2005, SIAM J. Optim..

[57]  Georg Ch. Pflug,et al.  A Distance For Multistage Stochastic Optimization Models , 2012, SIAM J. Optim..

[58]  Michael C. Ferris,et al.  Finite perturbation of convex programs , 1991 .

[59]  Antonio Frangioni,et al.  Inexact stabilized Benders’ decomposition approaches with application to chance-constrained problems with finite support , 2016, Comput. Optim. Appl..

[60]  Magnus Hindsberger ReSa: A method for solving multistage stochastic linear programs , 2014 .

[61]  Warren B. Powell,et al.  Regularized Decomposition of High-Dimensional Multistage Stochastic Programs with Markov Uncertainty , 2015, SIAM J. Optim..