Quality of Cell Products: Authenticity, Identity, Genomic Stability and Status of Differentiation

Cellular therapies that either use modifications of a patient’s own cells or allogeneic cell lines are becoming in vogue. Besides the technical issues of optimal isolation, cultivation and modification, quality control of the generated cellular products are increasingly being considered to be more important. This is not only relevant for the cell’s therapeutic application but also for cell science in general. Recent changes in editorial policies of respected journals, which now require proof of authenticity when cell lines are used, demonstrate that the subject of the present paper is not a virtual problem at all. In this article we provide 2 examples of contaminated cell lines followed by a review of the recent developments used to verify cell lines, stem cells and modifications of autologous cells. With relative simple techniques one can now prove the authenticity and the quality of the cellular material of interest and therefore improve the scientific basis for the development of cells for therapeutic applications. The future of advanced cellular therapies will require production and characterization of cells under GMP and GLP conditions, which include proof of identity, safety and functionality and absence of contamination.

[1]  D. Turnbull,et al.  Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA , 1999, Nature Genetics.

[2]  K. Hawkes,et al.  African populations and the evolution of human mitochondrial DNA. , 1991, Science.

[3]  Gunilla Caisander,et al.  Chromosomal integrity maintained in five human embryonic stem cell lines after prolonged in vitro culture , 2006, Chromosome Research.

[4]  Alexander Eckehart Urban,et al.  High-resolution mapping of DNA copy alterations in human chromosome 22 using high-density tiling oligonucleotide arrays. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Iscn International System for Human Cytogenetic Nomenclature , 1978 .

[6]  R. Hay Cell Quantitation and Characterization , 2002 .

[7]  M. Holland,et al.  Mitochondrial DNA sequence analysis of human skeletal remains: identification of remains from the Vietnam War. , 1993, Journal of forensic sciences.

[8]  J. Hata,et al.  Spontaneous transformation and immortalization of human endothelial cells , 1990, In Vitro Cellular & Developmental Biology.

[9]  S. Gronthos,et al.  Mesenchymal Stem Cell‐Organized Bone Marrow Elements: An Alternative Hematopoietic Progenitor Resource , 2006, Stem cells.

[10]  S. Harihara,et al.  Frequency of a 9-bp deletion in the mitochondrial DNA among Asian populations. , 1992, Human biology.

[11]  M. Paz,et al.  Molecular Characterization of Spontaneous Mesenchymal Stem Cell Transformation , 2008, PloS one.

[12]  D. Wallace,et al.  Mitochondrial DNA mutations in human degenerative diseases and aging. , 1995, Biochimica et biophysica acta.

[13]  L. Cavalli-Sforza,et al.  Human mitochondrial DNA types in two Israeli populations--a comparative study at the DNA level. , 1986, American journal of human genetics.

[14]  A. Breman,et al.  Interphase FISH demonstrates that human adipose stromal cells maintain a high level of genomic stability in long-term culture. , 2009, Stem cells and development.

[15]  H. Drexler,et al.  Short tandem repeat DNA typing provides an international reference standard for authentication of human cell lines. , 2005, ALTEX.

[16]  G. Shadel,et al.  Mitochondrial DNA maintenance in vertebrates. , 1997, Annual review of biochemistry.

[17]  D. Ledbetter,et al.  Multicolor Spectral Karyotyping of Human Chromosomes , 1996, Science.

[18]  O. Gordeeva,et al.  Pluripotent stem cells: Maintenance of genetic and epigenetic stability and prospects of cell technologies , 2008, Russian Journal of Developmental Biology.

[19]  O. Markovic,et al.  Cell cross-contamination in cell cultures: The silent and neglected danger , 1998, In Vitro Cellular & Developmental Biology - Animal.

[20]  H. Drexler,et al.  Continuous hematopoietic cell lines as model systems for leukemia-lymphoma research. , 2000, Leukemia research.

[21]  J. Cigudosa,et al.  Spontaneous human adult stem cell transformation. , 2005, Cancer research.

[22]  J. Hyllner,et al.  High‐Resolution Analysis of the Subtelomeric Regions of Human Embryonic Stem Cells , 2005, Stem cells.

[23]  N. Newman,et al.  African, Native American, and European mitochondrial DNAs in Cubans from Pinar del Rio Province and implications for the recent epidemic neuropathy in Cuba , 1995, Human mutation.

[24]  Mark R. Wilson,et al.  A high observed substitution rate in the human mitochondrial DNA control region , 1997, Nature Genetics.

[25]  F. Sanger,et al.  Sequence and organization of the human mitochondrial genome , 1981, Nature.

[26]  H. Drexler,et al.  ECV304 (endothelial) is really T24 (bladder carcinoma): Cell line cross-contamination at source , 1999, In Vitro Cellular & Developmental Biology - Animal.

[27]  P. Peltomäki Genetic basis of hereditary nonpolyposis colorectal carcinoma (HNPCC). , 1994, Annals of medicine.

[28]  J. Loring,et al.  Establishing Standards for the Characterization of Human Embryonic Stem Cell Lines , 2006, Stem cells.

[29]  M. Peschanski,et al.  Human embryonic stem cells reveal recurrent genomic instability at 20q11.21 , 2008, Nature Biotechnology.

[30]  M. Stoneking Mitochondrial DNA and human evolution , 1994, Journal of bioenergetics and biomembranes.

[31]  H. Drexler,et al.  Widespread intraspecies cross‐contamination of human tumor cell lines arising at source , 1999, International journal of cancer.

[32]  J N Beresford,et al.  Osteogenic stem cells and the stromal system of bone and marrow. , 1989, Clinical orthopaedics and related research.

[33]  Takumi Miura,et al.  Long‐term culture of human embryonic stem cells in feeder‐free conditions , 2004, Developmental dynamics : an official publication of the American Association of Anatomists.

[34]  P. Brandt,et al.  Identification of the species origin of highly processed meat products by mitochondrial DNA sequences. , 1995, PCR methods and applications.

[35]  P. Collas,et al.  Genetic and epigenetic instability of human bone marrow mesenchymal stem cells expanded in autologous serum or fetal bovine serum. , 2008, The International journal of developmental biology.

[36]  P. Bannasch,et al.  Damage to mitochondrial DNA induced by the hepatocarcinogen diethylnitrosamine in ovo. , 1995, Mutation research.

[37]  M. Salto‐Tellez,et al.  Denaturing High Performance Liquid Chromatography for the Detection of Microsatellite Instability Using Bethesda and Pentaplex Marker Panels , 2008, Diagnostic molecular pathology : the American journal of surgical pathology, part B.

[38]  S. Ledoux,et al.  Repair of mitochondrial DNA damage induced by bleomycin in human cells. , 1995, Mutation research.

[39]  R. Nims,et al.  Sensitivity of isoenzyme analysis for the detection of interspecies cell line cross-contamination , 1998, In Vitro Cellular & Developmental Biology - Animal.

[40]  K. Mittmann,et al.  Polymorphisms in the non‐coding region of the human mitochondrial genome in unrelated plateletapheresis donors , 2001, British journal of haematology.

[41]  P. Gill,et al.  Identification of the remains of the Romanov family by DNA analysis , 1994, Nature Genetics.

[42]  Chad A. Cowan,et al.  Derivation of embryonic stem-cell lines from human blastocysts. , 2004, The New England journal of medicine.

[43]  Lei Xiao,et al.  Stem cells shine in Shanghai. , 2008, Cell stem cell.

[44]  G. Stacey,et al.  Cell contamination leads to inaccurate data: we must take action now , 2000, Nature.

[45]  J. Thomson,et al.  Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells , 2004, Nature Biotechnology.

[46]  Rhitu Chatterjee,et al.  Cases of Mistaken Identity , 2007, Science.

[47]  W. Hiddemann,et al.  Use of polymorphisms in the noncoding region of the human mitochondrial genome to identify potential contamination of human leukemia-lymphoma cell lines. , 2004, The hematology journal : the official journal of the European Haematology Association.

[48]  W. Davidson,et al.  FINS (forensically informative nucleotide sequencing): a procedure for identifying the animal origin of biological specimens. , 1992, BioTechniques.

[49]  O. Myklebost,et al.  High-resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence , 2007, Journal of cellular and molecular medicine.

[50]  H. Parkes,et al.  The costs of using unauthenticated, over-passaged cell lines: how much more data do we need? , 2007, BioTechniques.

[51]  J A Thomson,et al.  Short tandem repeat profiling provides an international reference standard for human cell lines , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Steven L. Stice,et al.  Preserving the genetic integrity of human embryonic stem cells , 2005, Nature Biotechnology.

[53]  Zhe Wang,et al.  Cytogenetic analysis of human bone marrow‐derived mesenchymal stem cells passaged in vitro , 2007, Cell biology international.

[54]  A. Cometa,et al.  Human bone marrow-derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms , 2010 .

[55]  E. Blennow,et al.  Comparative genomic hybridization and karyotyping of human embryonic stem cells reveals the occurrence of an isodicentric X chromosome after long-term cultivation. , 2004, Molecular human reproduction.

[56]  A. Chakravarti,et al.  Genomic alterations in cultured human embryonic stem cells , 2005, Nature Genetics.

[57]  Catherine McCarthy,et al.  ISCN 2005: An International System for Human Cytogenetic Nomenclature [Book Review] , 2006 .

[58]  Michael R. Speicher,et al.  The new cytogenetics: blurring the boundaries with molecular biology , 2005, Nature Reviews Genetics.

[59]  K. Sermon,et al.  Recurrent chromosomal abnormalities in human embryonic stem cells , 2008, Nature Biotechnology.

[60]  A sequence‐specific polymerase chain reaction assay for mitochondrial DNA polymorphisms in human platelets and white cells , 1997, Transfusion.

[61]  C. Steinlein,et al.  Multicolor spectral karyotyping of rat chromosomes , 2003 .

[62]  W. Freed,et al.  Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. , 2004, Stem cells and development.

[63]  D. A. Clayton,et al.  The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Andrej-Nikolai Spiess,et al.  Accelerated and safe expansion of human mesenchymal stromal cells in animal serum‐free medium for transplantation and regenerative medicine , 2007, Journal of cellular physiology.

[65]  A. Di Rienzo,et al.  Branching pattern in the evolutionary tree for human mitochondrial DNA. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[66]  H. Drexler,et al.  False human hematopoietic cell lines: cross-contaminations and misinterpretations , 1999, Leukemia.