Forty thousand kilometers under quantum protection

[1]  M. Vyatkin,et al.  Optical fiber-based key for remote authentication of users and optical fiber line , 2023, ArXiv.

[2]  Hua-Lei Yin,et al.  Scalable High-Rate Twin-Field Quantum Key Distribution Networks without Constraint of Probability and Intensity , 2021, Physical Review A.

[3]  Hua-Lei Yin,et al.  Experimental quantum secure network with digital signatures and encryption , 2021, National science review.

[4]  Lan Zhou,et al.  Measurement-device-independent one-step quantum secure direct communication , 2022, Chinese Physics B.

[5]  Hua-Lei Yin,et al.  Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. , 2022, Science bulletin.

[6]  L. Yin,et al.  Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states , 2022, Light, science & applications.

[7]  Lan Zhou,et al.  One-step device-independent quantum secure direct communication , 2022, Science China Physics, Mechanics & Astronomy.

[8]  N. R. Kenbaev,et al.  Quantum postselective measurements: Sufficient condition for overcoming the Holevo bound and the role of max-relative entropy , 2022, Physical Review A.

[9]  Hua-Lei Yin,et al.  Breaking the Rate-Loss Bound of Quantum Key Distribution with Asynchronous Two-Photon Interference , 2021, PRX Quantum.

[10]  Lan Zhou,et al.  One-step quantum secure direct communication. , 2021, Science bulletin.

[11]  Hao Li,et al.  Quantum Key Distribution over 658 km Fiber with Distributed Vibration Sensing. , 2021, Physical review letters.

[12]  Zheng-Wei Zhou,et al.  Twin-field quantum key distribution over 830-km fibre , 2019, Nature Photonics.

[13]  Jian-Wei Pan,et al.  Implementation of a 46-node quantum metropolitan area network , 2021, npj Quantum Information.

[14]  Xianfeng Chen,et al.  A 15-user quantum secure direct communication network , 2021, Light: Science & Applications.

[15]  Jian-Wei Pan,et al.  An integrated space-to-ground quantum communication network over 4,600 kilometres , 2021, Nature.

[16]  Marco Lucamarini,et al.  600-km repeater-like quantum communications with dual-band stabilization , 2020, Nature Photonics.

[17]  K. Horodecki,et al.  Universal limitations on quantum key distribution over a network , 2019, Physical Review X.

[18]  Joseph Fitzsimons,et al.  Probabilistic one-time programs using quantum entanglement , 2020, 2008.02294.

[19]  J. S. Shaari,et al.  Advances in Quantum Cryptography , 2019, 1906.01645.

[20]  Shuang Wang,et al.  Beating the Fundamental Rate-Distance Limit in a Proof-of-Principle Quantum Key Distribution System , 2019, Physical Review X.

[21]  G. B. Lesovik,et al.  Arrow of time and its reversal on the IBM quantum computer , 2017, Scientific Reports.

[22]  F. Bussières,et al.  Secure Quantum Key Distribution over 421 km of Optical Fiber. , 2018, Physical review letters.

[23]  G. B. Lesovik,et al.  Entropy Dynamics in the System of Interacting Qubits , 2018, 1804.06873.

[24]  Jian-Wei Pan,et al.  Satellite-Relayed Intercontinental Quantum Network. , 2018, Physical review letters.

[25]  Philip Walther,et al.  Quantum advantage for probabilistic one-time programs , 2017, Nature Communications.

[26]  Dominique Unruh Everlasting Multi-party Computation , 2013, Journal of Cryptology.

[27]  Wei Zhang,et al.  Quantum Secure Direct Communication with Quantum Memory. , 2016, Physical review letters.

[28]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[29]  Hui Liu,et al.  Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber. , 2016, Physical review letters.

[30]  Joaquim Dias Garcia,et al.  ℓ1 Adaptive trend filter via fast coordinate descent , 2016, 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM).

[31]  Gustavo C. Amaral,et al.  Adaptive Filter for Automatic Identification of Multiple Faults in a Noisy OTDR Profile , 2016, Journal of Lightwave Technology.

[32]  G. B. Lesovik,et al.  H-theorem in quantum physics , 2014, Scientific Reports.

[33]  Christoph Pacher,et al.  Demystifying the information reconciliation protocol cascade , 2014, Quantum Inf. Comput..

[34]  Thomas Brochmann Pedersen,et al.  High performance information reconciliation for QKD with CASCADE , 2013, Quantum Inf. Comput..

[35]  Karol Horodecki,et al.  Free randomness amplification using bipartite chain correlations , 2013, 1303.5591.

[36]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[37]  T. Udem,et al.  Optical frequency transfer over a single-span 1840-km fiber link , 2013, 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC).

[38]  Kae Nemoto,et al.  Quantum communication without the necessity of quantum memories , 2012, Nature Photonics.

[39]  Tie-Jun Wang,et al.  Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities , 2012 .

[40]  T. Hänsch,et al.  A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place , 2012, Science.

[41]  W. Dur,et al.  Measurement-based quantum repeaters , 2012, 1204.2178.

[42]  M. Koashi,et al.  Quantum repeaters and computation by a single module: Remote nondestructive parity measurement , 2010, 1003.0181.

[43]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[44]  Min Raj Lamsal Quantum Optics: An Introduction , 2011 .

[45]  W. Munro,et al.  From quantum multiplexing to high-performance quantum networking , 2010 .

[46]  Pavel Sekatski,et al.  Quantum cloning for absolute radiometry. , 2010, Physical review letters.

[47]  Sarah J. Johnson,et al.  Iterative Error Correction: Turbo, Low-Density Parity-Check and Repeat-Accumulate Codes , 2009 .

[48]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[49]  C. Simon,et al.  Quantum Repeaters based on Single Trapped Ions , 2009, 0902.3127.

[50]  Douglas Stebila,et al.  The Case for Quantum Key Distribution , 2009, QuantumComm.

[51]  Jacob M. Taylor,et al.  Quantum repeater with encoding , 2008, 0809.3629.

[52]  Jan Bouda,et al.  Quantum key distribution and cryptography: a survey , 2009, Classical and Quantum Information Assurance Foundations and Practice.

[53]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[54]  N. Gisin,et al.  Quantum repeaters with photon pair sources and multimode memories. , 2007, Physical review letters.

[55]  Bing Qi,et al.  Experimental quantum key distribution with active phase randomization , 2007, 2007 Quantum Electronics and Laser Science Conference.

[56]  W. Munro,et al.  Hybrid quantum repeater using bright coherent light. , 2005, Physical review letters.

[57]  M. Lukin,et al.  Fault-tolerant quantum communication based on solid-state photon emitters. , 2004, Physical review letters.

[58]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[59]  Justin C. Miller,et al.  The security of quantum cryptography , 2004 .

[60]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[61]  S. J. van Enk,et al.  Quantum state of an ideal propagating laser field. , 2001, Physical review letters.

[62]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[63]  N. Lutkenhaus Security against individual attacks for realistic quantum key distribution , 1999, quant-ph/9910093.

[64]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[65]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[66]  D. Bruß Optimal Eavesdropping in Quantum Cryptography with Six States , 1998, quant-ph/9805019.

[67]  Klaus Mølmer,et al.  OPTICAL COHERENCE : A CONVENIENT FICTION , 1997 .

[68]  Hugo Krawczyk,et al.  LFSR-based Hashing and Authentication , 1994, CRYPTO.

[69]  Ueli Maurer,et al.  Generalized privacy amplification , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[70]  Alain Jaquier,et al.  Multiple‐channel digital lock‐in amplifier with PPM resolution , 1994 .

[71]  J. Scofield Frequency‐domain description of a lock‐in amplifier , 1994 .

[72]  Gilles Brassard,et al.  Secret-Key Reconciliation by Public Discussion , 1994, EUROCRYPT.

[73]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[74]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[75]  T. Horiguchi,et al.  Advances in optical time domain reflectometry , 1989 .

[76]  Gilles Brassard,et al.  Privacy Amplification by Public Discussion , 1988, SIAM J. Comput..

[77]  J. Rodgers,et al.  Thirteen ways to look at the correlation coefficient , 1988 .

[78]  Richard W. Hamming,et al.  Coding and Information Theory , 1980 .

[79]  Larry Carter,et al.  Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..

[80]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .

[81]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .

[82]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[83]  H. Primakoff,et al.  Field dependence of the intrinsic domain magnetization of a ferromagnet , 1940 .

[84]  K. Pearson Mathematical Contributions to the Theory of Evolution. III. Regression, Heredity, and Panmixia , 1896 .