On Second-Order Properties of the Moreau–Yosida Regularization for Constrained Nonsmooth Convex Programs

Abstract In this paper, we attempt to investigate a class of constrained nonsmooth convex optimization problems, that is, piecewise C 2 convex objectives with smooth convex inequality constraints. By using the Moreau–Yosida regularization, we convert these problems into unconstrained smooth convex programs. Then, we investigate the second-order properties of the Moreau–Yosida regularization η. By introducing the (GAIPCQ) qualification, we show that the gradient of the regularized function η is piecewise smooth, thereby, semismooth.

[1]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[2]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[3]  C. Lemaréchal,et al.  ON A BUNDLE ALGORITHM FOR NONSMOOTH OPTIMIZATION , 1981 .

[4]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[5]  R. Rockafellar,et al.  Maximal monotone relations and the second derivatives of nonsmooth functions , 1985 .

[6]  Robin W. Chaney,et al.  Second-order necessary conditions in semismooth optimization , 1988, Math. Program..

[7]  R. W. Chaney Optimality conditions for piecewiseC2 nonlinear programming , 1989 .

[8]  R. W. Chaney Piecewise functions in nonsmooth analysis , 1990 .

[9]  Krzysztof C. Kiwiel,et al.  Proximity control in bundle methods for convex nondifferentiable minimization , 1990, Math. Program..

[10]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[11]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[12]  Claude Lemaréchal,et al.  An approach to variable metric bundle methods , 1993, System Modelling and Optimization.

[13]  Yurii Nesterov,et al.  New variants of bundle methods , 1995, Math. Program..

[14]  Masao Fukushima,et al.  A Globally and Superlinearly Convergent Algorithm for Nonsmooth Convex Minimization , 1996, SIAM J. Optim..

[15]  Claude Lemaréchal,et al.  Variable metric bundle methods: From conceptual to implementable forms , 1997, Math. Program..

[16]  Yuri M. Ermoliev,et al.  Constraint aggregation principle in convex optimization , 1997, Math. Program..

[17]  Xiaojun Chen,et al.  A preconditioning proximal newton method for nondifferentiable convex optimization , 1997, Math. Program..

[18]  Jong-Shi Pang,et al.  Piecewise Smoothness, Local Invertibility, and Parametric Analysis of Normal Maps , 1996, Math. Oper. Res..

[19]  Defeng Sun,et al.  On a conjecture in Moreau-Yosida approximation of a nonsmooth convex function , 1997 .

[20]  Claude Lemaréchal,et al.  Practical Aspects of the Moreau-Yosida Regularization: Theoretical Preliminaries , 1997, SIAM J. Optim..

[21]  Defeng Sun,et al.  Properties of the Moreau-Yosida regularization of a piecewise C2 convex function , 1999, Math. Program..