Revisiting Algebra and Complexity of Inference in Graphical Models

This paper studies the form and complexity of inference in graphical models using the abstraction offered by algebraic structures. In particular, we broadly formalize inference problems in graphical models by viewing them as a sequence of operations based on commutative semigroups. We then study the computational complexity of inference by organizing various problems into an "inference hierarchy". When the underlying structure of an inference problem is a commutative semiring -- i.e. a combination of two commutative semigroups with the distributive law -- a message passing procedure called belief propagation can leverage this distributive law to perform polynomial-time inference for certain problems. After establishing the NP-hardness of inference in any commutative semiring, we investigate the relation between algebraic properties in this setting and further show that polynomial-time inference using distributive law does not (trivially) extend to inference problems that are expressed using more than two commutative semigroups. We then extend the algebraic treatment of message passing procedures to survey propagation, providing a novel perspective using a combination of two commutative semirings. This formulation generalizes the application of survey propagation to new settings.

[1]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[2]  W. Freeman,et al.  Generalized Belief Propagation , 2000, NIPS.

[3]  Rina Dechter,et al.  Hybrid Processing of Beliefs and Constraints , 2001, UAI.

[4]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[5]  G. Forney,et al.  Codes on graphs: normal realizations , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[6]  R.J. McEliece,et al.  Iterative decoding on graphs with a single cycle , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[7]  Richard S. Zemel,et al.  HOP-MAP: Efficient Message Passing with High Order Potentials , 2010, AISTATS.

[8]  S. Stenholm Information, Physics and Computation, by Marc Mézard and Andrea Montanari , 2010 .

[9]  Ronald A. Howard,et al.  Influence Diagrams , 2005, Decis. Anal..

[10]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[11]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[12]  Michael Kearns,et al.  Algorithmic Game Theory: Graphical Games , 2007 .

[13]  Robert J. McEliece,et al.  The generalized distributive law , 2000, IEEE Trans. Inf. Theory.

[14]  Peter Clifford,et al.  Markov Random Fields in Statistics , 2012 .

[15]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[16]  Bart Selman,et al.  Survey Propagation Revisited , 2007, UAI.

[17]  Riccardo Zecchina,et al.  Survey propagation: An algorithm for satisfiability , 2002, Random Struct. Algorithms.

[18]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[19]  B. Eckmann,et al.  Group-like structures in general categories I multiplications and comultiplications , 1962 .

[20]  Venkat Chandrasekaran,et al.  Complexity of Inference in Graphical Models , 2008, UAI.

[21]  Prakash P. Shenoy,et al.  Axioms for probability and belief-function proagation , 1990, UAI.

[22]  Thomas Schiex,et al.  Valued Constraint Satisfaction Problems: Hard and Easy Problems , 1995, IJCAI.

[23]  Riccardo Zecchina,et al.  Constraint Satisfaction by Survey Propagation , 2002, Computational Complexity and Statistical Physics.

[24]  Leslie G. Valiant,et al.  NP is as easy as detecting unique solutions , 1985, STOC '85.

[25]  M. Kearns,et al.  Algorithmic Game Theory: Graphical Games , 2007 .

[26]  Tom Heskes,et al.  Stable Fixed Points of Loopy Belief Propagation Are Local Minima of the Bethe Free Energy , 2002, NIPS.

[27]  Martin J. Wainwright,et al.  A new look at survey propagation and its generalizations , 2004, SODA '05.

[28]  Eric Monfroy,et al.  Beyond NP: Arc-Consistency for Quantified Constraints , 2002, CP.

[29]  Devavrat Shah,et al.  Maximum weight matching via max-product belief propagation , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[30]  Michael I. Jordan,et al.  Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.

[31]  A. Darwiche,et al.  Complexity Results and Approximation Strategies for MAP Explanations , 2011, J. Artif. Intell. Res..

[32]  Prakash P. Shenoy,et al.  Valuation-based systems: a framework for managing uncertainty in expert systems , 1992 .

[33]  Fahiem Bacchus,et al.  Representing and reasoning with probabilistic knowledge - a logical approach to probabilities , 1991 .

[34]  William T. Freeman,et al.  Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology , 1999, Neural Computation.

[35]  Thomas Schiex,et al.  An Algebraic Graphical Model for Decision with Uncertainties, Feasibilities, and Utilities , 2007, J. Artif. Intell. Res..

[36]  Thomas Schiex,et al.  Semiring-Based CSPs and Valued CSPs: Frameworks, Properties, and Comparison , 1999, Constraints.

[37]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[38]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[39]  Riccardo Zecchina,et al.  Survey propagation as local equilibrium equations , 2003, ArXiv.

[40]  S. Aji,et al.  The Generalized Distributive Law and Free Energy Minimization , 2001 .

[41]  P. Anderson,et al.  Application of statistical mechanics to NP-complete problems in combinatorial optimisation , 1986 .

[42]  Solomon Eyal Shimony,et al.  Finding MAPs for Belief Networks is NP-Hard , 1994, Artif. Intell..

[43]  Tai Sing Lee,et al.  Efficient belief propagation for higher-order cliques using linear constraint nodes , 2008, Comput. Vis. Image Underst..

[44]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[45]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[46]  Rémi Monasson,et al.  Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.

[47]  Adrian Weller,et al.  On MAP Inference by MWSS on Perfect Graphs , 2013, UAI.

[48]  PotetzBrian,et al.  Efficient belief propagation for higher-order cliques using linear constraint nodes , 2008 .

[49]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[50]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[51]  Bert Huang,et al.  Approximating the Permanent with Belief Propagation , 2009, ArXiv.

[52]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[53]  Toniann Pitassi,et al.  Stochastic Boolean Satisfiability , 2001, Journal of Automated Reasoning.

[54]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[55]  C. Pinter A book of abstract algebra , 1982 .

[56]  Robijn Bruinsma,et al.  Soft order in physical systems , 1994 .

[57]  Steffen L. Lauritzen,et al.  Local computation with valuations from a commutative semigroup , 1997, Annals of Mathematics and Artificial Intelligence.

[58]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[59]  Luis E. Ortiz,et al.  Nash Propagation for Loopy Graphical Games , 2002, NIPS.

[60]  Klaus W. Wagner,et al.  The complexity of combinatorial problems with succinct input representation , 1986, Acta Informatica.

[61]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[62]  Yashodhan Kanoria,et al.  Robust max-product belief propagation , 2011, 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[63]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[64]  Brendan J. Frey,et al.  Min-Max Problems on Factor Graphs , 2014, ICML.

[65]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..