Hardware‐Based Encryption via Generalized Synchronization of Complex Networks

[1]  Stephen A. Benton,et al.  Physical one-way functions , 2001 .

[2]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[3]  G. Rizzolatti,et al.  Understanding motor events: a neurophysiological study , 2004, Experimental Brain Research.

[4]  M. C. Soriano,et al.  Dynamics, correlation scaling, and synchronization behavior in rings of delay-coupled oscillators. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Georg T. Becker,et al.  The Gap Between Promise and Reality: On the Insecurity of XOR Arbiter PUFs , 2015, CHES.

[6]  Daniel Brunner,et al.  Bidirectional private key exchange using delay-coupled semiconductor lasers. , 2016, Optics letters.

[7]  Srinivas Devadas,et al.  Silicon physical random functions , 2002, CCS '02.

[8]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[9]  Lars Keuninckx,et al.  Encryption key distribution via chaos synchronization , 2017, Scientific Reports.

[10]  Laurent Larger,et al.  Chaos-based communications at high bit rates using commercial fibre-optic links , 2005, Nature.

[11]  Ingo Fischer,et al.  Limits to detection of generalized synchronization in delay-coupled chaotic oscillators. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  M. C. Soriano,et al.  Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers , 2013 .

[13]  Henrique M. Oliveira,et al.  Huygens synchronization of two clocks , 2015, Scientific Reports.

[14]  Alan V. Oppenheim,et al.  Synchronization of Lorenz-based chaotic circuits with applications to communications , 1993 .

[15]  Srinivas Devadas,et al.  Physical Unclonable Functions and Applications: A Tutorial , 2014, Proceedings of the IEEE.