Terahertz photonic crystal quantum cascade lasers.

We combine photonic crystal and quantum cascade band engineering to create an in-plane laser at terahertz frequency. We demonstrate that such photonic crystal lasers strongly improve the performances of terahertz quantum cascade material in terms of threshold current, waveguide losses, emission mode selection, tunability and maximum operation temperature. The laser operates in a slow-light regime between the M saddle point and K band-edge in reciprocal lattice. Coarse frequency control of half of a terahertz is achieved by lithographically tuning the photonic crystal period. Thanks to field assisted gain shift and cavity pulling, the single mode emission is continuously tuned over 30 GHz.

[1]  B. Williams Terahertz quantum cascade lasers , 2007, 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference.

[2]  Michael Scalora,et al.  The photonic band edge laser: A new approach to gain enhancement , 1994 .

[3]  H. Beere,et al.  Surface plasmon photonic structures in terahertz quantum cascade lasers. , 2006, Optics express.

[4]  Shouyuan Shi,et al.  Photonic Crystal Structures and Applications: Perspective, Overview, and Development , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  Qing Hu,et al.  Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode. , 2005, Optics express.

[6]  A. Tredicucci,et al.  Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[7]  Soon-Hong Kwon,et al.  Electrically Driven Single-Cell Photonic Crystal Laser , 2004, Science.

[8]  C. Deutsch,et al.  Terahertz photonic crystal resonators in double-metal waveguides. , 2007, Optics express.

[9]  Qing Hu,et al.  Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators , 2005 .

[10]  Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[11]  John D. Joannopoulos,et al.  Laser action from two-dimensional distributed feedback in photonic crystals , 1999 .

[12]  Kazuaki Sakoda,et al.  A Two-Dimensional Photonic Crystal Laser. , 1999 .

[13]  Qing Hu,et al.  Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinement , 2003 .

[14]  M. Ibanescu,et al.  Enhanced photonic band-gap confinement via Van Hove saddle point singularities. , 2006, Physical review letters.

[15]  Marcella Giovannini,et al.  Design, fabrication and optical characterization of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors. , 2005, Optics express.

[16]  Shunji Nojima,et al.  Optical-gain enhancement in two-dimensional active photonic crystals , 2001 .

[17]  Soon-Hong Kwon,et al.  Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs , 2002 .

[18]  O. Painter,et al.  Two-dimensional photonic bandgap defect laser , 1999, 1999 Digest of the LEOS Summer Topical Meetings: Nanostructures and Quantum Dots/WDM Components/VCSELs and Microcavaties/RF Photonics for CATV and HFC Systems (Cat. No.99TH8455).

[19]  Marcella Giovannini,et al.  Small optical volume terahertz emitting microdisk quantum cascade lasers , 2007 .

[20]  G. Scalari,et al.  Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction , 2005, CLEO/Europe. 2005 Conference on Lasers and Electro-Optics Europe, 2005..

[21]  Qing Hu,et al.  Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides. , 2007, Optics express.

[22]  E. Linfield,et al.  Loss-coupled distributed feedback far-infrared quantum cascade lasers , 2005 .

[23]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[24]  Federico Capasso,et al.  Quantum Cascade Surface-Emitting Photonic Crystal Laser , 2003, Science.