Science Goals and Mission Objectives for the Future Exploration of Ice Giants Systems: A Horizon 2061 Perspective

[1]  J. Chaufray,et al.  UV exploration of the solar system , 2021, Experimental Astronomy.

[2]  L. Lamy Auroral emissions from Uranus and Neptune , 2020, Philosophical Transactions of the Royal Society A.

[3]  G. DiBraccio,et al.  Ice giant magnetospheres , 2020, Philosophical Transactions of the Royal Society A.

[4]  M. Showalter The rings and small moons of Uranus and Neptune , 2020, Philosophical Transactions of the Royal Society A.

[5]  K. Mandt,et al.  Ice giant system exploration in the 2020s: an introduction , 2020, Philosophical Transactions of the Royal Society A.

[6]  A. Friedson Ice giant seismology: prospecting for normal modes , 2020, Philosophical Transactions of the Royal Society A.

[7]  Katherine G. Jackson,et al.  The underexplored frontier of ice giant dynamos , 2020, Philosophical Transactions of the Royal Society A.

[8]  J. Lunine,et al.  Tracing the Origins of the Ice Giants Through Noble Gas Isotopic Composition , 2020, Space Science Reviews.

[9]  J. Fortney,et al.  The interiors of Uranus and Neptune: current understanding and open questions , 2020, Philosophical Transactions of the Royal Society A.

[10]  P. Dalba,et al.  The exoplanet perspective on future ice giant exploration , 2020, Philosophical Transactions of the Royal Society A.

[11]  A. Christou,et al.  The Origin of Neptune’s Unusual Satellites from a Planetary Encounter , 2020, The Astronomical Journal.

[12]  R. Pappalardo,et al.  NASA’s Europa Clipper—a mission to a potentially habitable ocean world , 2020, Nature Communications.

[13]  D. Turrini,et al.  Normalized angular momentum deficit: a tool for comparing the violence of the dynamical histories of planetary systems , 2020, Astronomy & Astrophysics.

[14]  J. Spencer,et al.  Proposed plume source regions on Europa: No evidence for endogenic thermal emission , 2020 .

[15]  J. H. In,et al.  Deep Atmosphere Composition, Structure, Origin, and Exploration, with Particular Focus on Critical in situ Science at the Icy Giants , 2020, Space Science Reviews.

[16]  C. Sotin,et al.  Large Ocean Worlds with High-Pressure Ices , 2020 .

[17]  L. Griton,et al.  Magnetohydrodynamic simulations of a Uranus-at-equinox type rotating magnetosphere , 2020, Astronomy & Astrophysics.

[18]  A. Johansen,et al.  Formation of moon systems around giant planets , 2019, Astronomy & Astrophysics.

[19]  R. Hueso,et al.  Atmospheric Dynamics and Vertical Structure of Uranus and Neptune’s Weather Layers , 2019, Space Science Reviews.

[20]  Nitin Arora,et al.  Uranus and Neptune missions: A study in advance of the next Planetary Science Decadal Survey , 2019, Planetary and Space Science.

[21]  Pontus C. Brandt,et al.  Near-term interstellar probe: First step , 2019, Acta Astronautica.

[22]  S. Ida,et al.  The Galilean Satellites Formed Slowly from Pebbles , 2019, The Astrophysical Journal.

[23]  D. Hamilton,et al.  Tilting Ice Giants with a Spin–Orbit Resonance , 2019, The Astrophysical Journal.

[24]  G. Schubert,et al.  Effect of non-adiabatic thermal profiles on the inferred compositions of Uranus and Neptune , 2019, Monthly Notices of the Royal Astronomical Society.

[25]  G. Lockwood Final compilation of photometry of Uranus and Neptune, 1972–2016. , 2019, Icarus.

[26]  Marius Millot,et al.  Nanosecond X-ray diffraction of shock-compressed superionic water ice , 2019, Nature.

[27]  B. Militzer,et al.  Measurement and implications of Saturn’s gravity field and ring mass , 2019, Science.

[28]  Sona Hosseini,et al.  The NASA Roadmap to Ocean Worlds , 2018, Astrobiology.

[29]  G. Orton,et al.  Probable detection of hydrogen sulphide (H2S) in Neptune’s atmosphere , 2018, Icarus.

[30]  F. Postberg,et al.  In situ collection of dust grains falling from Saturn’s rings into its atmosphere , 2018, Science.

[31]  W. Ip,et al.  Chemical interactions between Saturn’s atmosphere and its rings , 2018, Science.

[32]  F. Leblanc,et al.  Sodium, Potassium, and Calcium in Europa: An Atomic Journey through Water Ice , 2018, The Astrophysical Journal.

[33]  T. Spilker,et al.  A Joint NASA/ESA Mission Concept for In Situ Probe Explorations of the Ice Giants , 2018 .

[34]  P. Zarka,et al.  Jupiter radio emission induced by Ganymede and consequences for the radio detection of exoplanets , 2018, Astronomy & Astrophysics.

[35]  A. Masters,et al.  A More Viscous‐Like Solar Wind Interaction With All the Giant Planets , 2018, Geophysical Research Letters.

[36]  Mary A. Voytek,et al.  The Ladder of Life Detection , 2018, Astrobiology.

[37]  L. Griton,et al.  Three‐Dimensional Magnetohydrodynamic Simulations of the Solar Wind Interaction With a Hyperfast‐Rotating Uranus , 2018, Journal of Geophysical Research: Space Physics.

[38]  M. Kivelson,et al.  Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures , 2018 .

[39]  Erik A. Petigura,et al.  The California-Kepler Survey. VII. Precise Planet Radii Leveraging Gaia DR2 Reveal the Stellar Mass Dependence of the Planet Radius Gap , 2018, The Astronomical Journal.

[40]  B. Bézard,et al.  Detection of hydrogen sulfide above the clouds in Uranus’s atmosphere , 2018, Nature Astronomy.

[41]  J. Cuzzi,et al.  The Rings of Saturn , 2018 .

[42]  G. Orton,et al.  Seasonal Stratospheric Photochemistry on Uranus and Neptune. , 2018, Icarus.

[43]  Gilbert W. Collins,et al.  Experimental evidence for superionic water ice using shock compression , 2018 .

[44]  P. Nicholson,et al.  Narrow Rings, Gaps, and Sharp Edges , 2018 .

[45]  P. Longaretti Theory of Narrow Rings and Sharp Edges , 2018 .

[46]  K. Ohtsuki,et al.  Computer Simulations of Planetary Rings , 2018 .

[47]  C. Murray,et al.  Planetary Ring Systems. Properties, Structure, and Evolution , 2018 .

[48]  M. Showalter,et al.  The Rings of Neptune , 2018, 1906.11728.

[49]  J. Gérard,et al.  Evidence for Auroral Emissions From Callisto's Footprint in HST UV Images , 2018 .

[50]  A. A. Barabanov,et al.  Advanced Russian Mission Laplace-P to Study the Planetary System of Jupiter: Scientific Goals, Objectives, Special Features and Mission Profile , 2017 .

[51]  R. Pappalardo,et al.  Band Formation and Ocean‐Surface Interaction on Europa and Ganymede , 2017, Geophysical Research Letters.

[52]  E. Cloutis,et al.  Composition of Jupiter irregular satellites sheds light on their origin , 2017, 1710.06200.

[53]  A. Hayes,et al.  Exposure age of Saturn's A and B rings, and the Cassini Division as suggested by their non-icy material content , 2017 .

[54]  P. Zarka,et al.  Radio emission from satellite-Jupiter interactions (especially Ganymede) , 2017, 1709.04386.

[55]  Philippe Zarka,et al.  Detection of Jupiter decametric emissions controlled by Europa and Ganymede with Voyager/PRA and Cassini/RPWS , 2017 .

[56]  T. Encrenaz,et al.  Scientific rationale for Uranus and Neptune in situ explorations , 2017, Planetary and Space Science.

[57]  Shannon T. Brown,et al.  The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data , 2017 .

[58]  Xin Cao,et al.  Diurnal and seasonal variability of Uranus's magnetosphere , 2017 .

[59]  S. Charnoz,et al.  Dynamical Evolution of the Debris Disk after a Satellite Catastrophic Disruption around Saturn , 2017, 1705.07554.

[60]  Mark E. Perry,et al.  Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes , 2017, Science.

[61]  R. Prangé,et al.  The aurorae of Uranus past equinox , 2017 .

[62]  Howard Isaacson,et al.  The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets , 2017, 1703.10375.

[63]  Jonathan M Aurnou,et al.  A heuristic framework for next-generation models of geostrophic convective turbulence , 2017, Geophysical & Astrophysical Fluid Dynamics.

[64]  A. Jäggi,et al.  Joint Europa Mission (JEM): a multi-scale study of Europa to characterize its habitability and search for extant life , 2017, Planetary and Space Science.

[65]  R. Canup,et al.  Triton's Evolution with a Primordial Neptunian Satellite System , 2017, The Astronomical journal.

[66]  N. Pogorelov,et al.  Uranus' aurorae past equinox , 2017, 1702.08705.

[67]  Jonathan I. Lunine,et al.  Ocean worlds exploration , 2017 .

[68]  P. Beck,et al.  Composition of Solar System Small Bodies , 2016, 1611.08731.

[69]  J. Moore,et al.  Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto , 2016, Nature.

[70]  T. Guillot,et al.  Condensation-inhibited convection in hydrogen-rich atmospheres . Stability against double-diffusive processes and thermal profiles for Jupiter, Saturn, Uranus, and Neptune , 2016, 1610.05506.

[71]  Alessandro Morbidelli,et al.  Challenges in planet formation , 2016, 1610.07202.

[72]  E. Bergeron,et al.  PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS , 2016, 1609.08215.

[73]  K. Ohtsuki,et al.  Ring formation around giant planets by tidal disruption of a single passing large Kuiper belt object , 2016, 1609.02396.

[74]  M. Way,et al.  Was Venus the first habitable world of our solar system? , 2016, Geophysical research letters.

[75]  Gabriel Tobie,et al.  Enceladus's internal ocean and ice shell constrained from Cassini gravity, shape, and libration data , 2016 .

[76]  J. Fortney,et al.  Uranus evolution models with simple thermal boundary layers , 2016, 1605.00171.

[77]  M. Ćuk,et al.  DYNAMICAL EVIDENCE FOR A LATE FORMATION OF SATURN’S MOONS , 2016, 1603.07071.

[78]  F. Postberg,et al.  High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus , 2015, Nature Communications.

[79]  J. A. Burns,et al.  Enceladus's measured physical libration requires a global subsurface ocean , 2015, 1509.07555.

[80]  Sascha Kempf,et al.  Ongoing hydrothermal activities within Enceladus , 2015, Nature.

[81]  Paul D. Feldman,et al.  The search for a subsurface ocean in Ganymede with Hubble Space Telescope observations of its auroral ovals , 2015 .

[82]  Peter A. Delamere,et al.  Magnetotails in the solar system , 2015 .

[83]  P. Gaulme,et al.  Seismology of giant planets , 2014, 1411.1740.

[84]  L. Prockter,et al.  Evidence for subduction in the ice shell of Europa , 2014 .

[85]  A. Rhoden,et al.  THE 3 μm SPECTRUM OF JUPITER's IRREGULAR SATELLITE HIMALIA , 2014, 1409.1261.

[86]  Matthäus Schulik,et al.  Dayglow and auroral emissions of Uranus in H2 FUV bands , 2014 .

[87]  Adam Masters,et al.  Magnetic reconnection at Uranus' magnetopause , 2014 .

[88]  S. W. Asmar,et al.  The Gravity Field and Interior Structure of Enceladus , 2014, Science.

[89]  F. Nimmo,et al.  Powering Triton's recent geological activity by obliquity tides: Implications for Pluto geology , 2014 .

[90]  P. Gaulme,et al.  The comparative exploration of the ice giant planets with twin spacecraft: Unveiling the history of our Solar System , 2014, 1402.2650.

[91]  Paul D. Feldman,et al.  Transient Water Vapor at Europa’s South Pole , 2014, Science.

[92]  D. Vokrouhlický,et al.  CAPTURE OF IRREGULAR SATELLITES AT JUPITER , 2014, 1401.0253.

[93]  S. W. H. Cowley,et al.  Response of Uranus' auroras to solar wind compressions at equinox , 2013 .

[94]  William B. Hubbard,et al.  Atmospheric confinement of jet streams on Uranus and Neptune , 2013, Nature.

[95]  M. Heimpel,et al.  Turbulent models of ice giant internal dynamics: Dynamos, heat transfer, and zonal flows , 2013 .

[96]  J. Aurnou,et al.  Turbulent convection in liquid metal with and without rotation , 2013, Proceedings of the National Academy of Sciences.

[97]  P. Drossart,et al.  JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system , 2013 .

[98]  James E. Owen,et al.  KEPLER PLANETS: A TALE OF EVAPORATION , 2013, 1303.3899.

[99]  H. Hayakawa,et al.  Size distribution of particles in Saturn’s rings from aggregation and fragmentation , 2013, Proceedings of the National Academy of Sciences.

[100]  J. Burns,et al.  COMPOSITIONS AND ORIGINS OF OUTER PLANET SYSTEMS: INSIGHTS FROM THE ROCHE CRITICAL DENSITY , 2013, 1302.1253.

[101]  S. Charnoz,et al.  Formation of Regular Satellites from Ancient Massive Rings in the Solar System , 2012, Science.

[102]  J. Fortney,et al.  New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modified shape and rotation data , 2012, 1207.2309.

[103]  K. Tsiganis,et al.  Explaining why the uranian satellites have equatorial prograde orbits despite the large planetary obliquity , 2012, 1208.4685.

[104]  S. Ida,et al.  N-BODY SIMULATIONS OF SATELLITE FORMATION AROUND GIANT PLANETS: ORIGIN OF ORBITAL CONFIGURATION OF THE GALILEAN MOONS , 2012, 1205.0301.

[105]  Nikku Madhusudhan,et al.  NEBULAR WATER DEPLETION AS THE CAUSE OF JUPITER'S LOW OXYGEN ABUNDANCE , 2012, 1204.3887.

[106]  Philippe Zarka,et al.  Earth‐based detection of Uranus' aurorae , 2012 .

[107]  M. Tiscareno Planetary Rings , 2011, 1112.3305.

[108]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[109]  A. Coradini,et al.  Vesta and Ceres: Crossing the History of the Solar System , 2011, 1106.0152.

[110]  J. Burns,et al.  The Impact of Comet Shoemaker-Levy 9 Sends Ripples Through the Rings of Jupiter , 2011, Science.

[111]  Barry H. Mauk,et al.  The auroral footprint of Enceladus on Saturn , 2011, Nature.

[112]  R. Canup Origin of Saturn’s rings and inner moons by mass removal from a lost Titan-sized satellite , 2010, Nature.

[113]  F. Marzari,et al.  A new perspective on the irregular satellites of Saturn – II. Dynamical and physical origin , 2010, 1011.5662.

[114]  Ravit Helled,et al.  INTERIOR MODELS OF URANUS AND NEPTUNE , 2010, 1010.5546.

[115]  J. Anderson,et al.  Uranus and Neptune: Shape and rotation , 2010, 1006.3840.

[116]  James W. Head,et al.  Geologic history of Mars , 2010 .

[117]  Aaron C. Boley,et al.  Clumps in the outer disk by disk instability: Why they are initially gas giants and the legacy of disruption , 2009, 0909.4543.

[118]  C. Sotin,et al.  THE ARCHITECTURE OF THE CASSINI DIVISION , 2009, 0911.2438.

[119]  W. S. Lewis,et al.  Liquid water on Enceladus from observations of ammonia and 40Ar in the plume , 2009, Nature.

[120]  S. Charnoz,et al.  Deciphering the origin of the regular satellites of gaseous giants ― Iapetus: The Rosetta ice-moon , 2009, 0908.2112.

[121]  Harold F. Levison,et al.  Contamination of the asteroid belt by primordial trans-Neptunian objects , 2009, Nature.

[122]  F. Postberg,et al.  Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus , 2009, Nature.

[123]  D. Turrini,et al.  Planetesimals and Satellitesimals: Formation of the Satellite Systems , 2009, 0906.0353.

[124]  F. Herbert,et al.  The Aurora and Magnetic Field of Uranus , 2008 .

[125]  Richard Moissl,et al.  In-Situ Dust Measurements in Jupiter's Gossamer Rings , 2008, 0803.2849.

[126]  Christopher F Chyba,et al.  Energy, chemical disequilibrium, and geological constraints on Europa. , 2007, Astrobiology.

[127]  K. Zahnle,et al.  On the negligible surface age of Triton , 2007 .

[128]  M. Showalter,et al.  Clump Detections and Limits on Moons in Jupiter's Ring System , 2007, Science.

[129]  S. Asmar,et al.  Gravity field and interior of Rhea from Cassini data analysis , 2007 .

[130]  Imke de Pater,et al.  The Dark Side of the Rings of Uranus , 2007, Science.

[131]  C. Higgins Satellite control of Jovian 2-6 MHz radio emission using Voyager data , 2007 .

[132]  D. Vokrouhlický,et al.  Capture of Irregular Satellites during Planetary Encounters , 2007 .

[133]  D. Jewitt,et al.  Irregular Satellites of the Planets: Products of Capture in the Early Solar System , 2007, astro-ph/0703059.

[134]  G. Schubert,et al.  Saturn's satellite Rhea is a homogeneous mix of rock and ice , 2007 .

[135]  Xinli Lu,et al.  A Clathrate Reservoir Hypothesis for Enceladus' South Polar Plume , 2006, Science.

[136]  T. Spohn,et al.  Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects , 2006 .

[137]  S. Stanley,et al.  Numerical dynamo models of Uranus' and Neptune's magnetic fields , 2006 .

[138]  William R. Ward,et al.  A common mass scaling for satellite systems of gaseous planets , 2006, Nature.

[139]  Douglas P. Hamilton,et al.  Neptune's capture of its moon Triton in a binary–planet gravitational encounter , 2006, Nature.

[140]  P. Zarka Plasma interactions of exoplanets with their parent star and associated radio emissions , 2006 .

[141]  M. Showalter,et al.  The Second Ring-Moon System of Uranus: Discovery and Dynamics , 2006, Science.

[142]  J. Thomas-Osip,et al.  Aqueous alteration affecting the irregular outer planets satellites : Evidence from spectral reflectance , 2006 .

[143]  K. Tsiganis,et al.  Chaotic capture of Jupiter's Trojan asteroids in the early Solar System , 2005, Nature.

[144]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[145]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[146]  M. Showalter,et al.  The dynamic neptunian ring arcs: evidence for a gradual disappearance of Liberté and resonant jump of courage , 2005 .

[147]  M. W. Evans,et al.  Cassini Imaging Science: Initial Results on Phoebe and Iapetus , 2005, Science.

[148]  J. Burns,et al.  The jovian rings: new results derived from Cassini, Galileo, Voyager, and Earth-based observations , 2004 .

[149]  T. Grav,et al.  Photometry of Irregular Satellites of Uranus and Neptune , 2004, astro-ph/0405605.

[150]  S. Stanley,et al.  Convective-region geometry as the cause of Uranus' and Neptune's unusual magnetic fields , 2004, Nature.

[151]  J. Burns,et al.  Gas-drag-assisted capture of Himalia's family , 2004 .

[152]  S. Fagents Considerations for effusive cryovolcanism on Europa: The post‐Galileo perspective , 2003 .

[153]  Ignacio Mosqueira,et al.  Formation of the regular satellites of giant planets in an extended gaseous nebula I: subnebula model and accretion of satellites , 2003 .

[154]  I. Mosqueira,et al.  Formation of the regular satellites of giant planets in an extended gaseous nebula II: satellite migration and survival , 2003 .

[155]  Michael H. Wong,et al.  Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets , 2003 .

[156]  T. Grav,et al.  Photometric survey of the irregular satellites , 2003, astro-ph/0301016.

[157]  William R. Ward,et al.  Formation of the Galilean Satellites: Conditions of Accretion , 2002 .

[158]  C. Porco,et al.  The confinement of Neptune's ring arcs by the moon Galatea , 2002, Nature.

[159]  J. H. Waite,et al.  Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter , 2002, Nature.

[160]  A. Boss,et al.  Rapid Formation of Ice Giant Planets , 2001, astro-ph/0112406.

[161]  K. Walsh,et al.  Implied Evolutionary Differences of the Jovian Irregular Satellites from a BVR Color Survey , 2001 .

[162]  I. W. Christopher,et al.  Control of Jovian radio emission by Callisto , 2001 .

[163]  Charles A. Hibbitts,et al.  Hydrated Salt Minerals on Ganymede's Surface: Evidence of an Ocean Below , 2001, Science.

[164]  J. Lunine,et al.  Enrichments in Volatiles in Jupiter: A New Interpretation of the Galileo Measurements , 2001 .

[165]  B. Davidsson,et al.  Tidal Splitting and Rotational Breakup of Solid Spheres , 1999 .

[166]  Bill R. Sandel,et al.  Ultraviolet observations of Uranus and Neptune , 1999 .

[167]  J. Burns,et al.  The formation of Jupiter's faint rings , 1999, Science.

[168]  S. Squyres,et al.  Ice diapirs on Europa: Implications for liquid water , 1998 .

[169]  C. T. Russell,et al.  Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto , 1998, Nature.

[170]  L. Burlaga,et al.  Heliospheric magnetic field strength out to 66 AU: Voyager 1, 1978–1996 , 1998 .

[171]  J. H. Waite,et al.  Hubble Space Telescope imaging of Jupiter's UV aurora during the Galileo orbiter mission , 1998 .

[172]  M. Gutzwiller,et al.  Moon-Earth-Sun: The oldest three-body problem , 1998 .

[173]  R. Greeley,et al.  Geological evidence for solid-state convection in Europa's ice shell , 1998, Nature.

[174]  Mihaly Horanyi,et al.  CHARGED DUST DYNAMICS IN THE SOLAR SYSTEM , 1996 .

[175]  M. Schulz,et al.  Source‐surface modeling of planetary magnetospheres , 1996 .

[176]  David Southwood,et al.  Rapid energy dissipation and variability of the lo–Jupiter electrodynamic circuit , 1996, Nature.

[177]  R. Holme,et al.  The magnetic fields of Uranus and Neptune: Methods and models , 1996 .

[178]  W. McKinnon,et al.  Gas Drag and the Orbital Evolution of a Captured Triton , 1995 .

[179]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[180]  T. Guillot Condensation of methane, ammonia, and water and the inhibition of convection in giant planets. , 1995, Science.

[181]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[182]  R. Lepping Comparisons of the field configurations of the magnetotails of Uranus and Neptune , 1994 .

[183]  J. Greenberg,et al.  Conditions for condensation and preservation of amorphous ice and crystallinity of astrophysical ices , 1994 .

[184]  A. F. Cheng,et al.  A model of Triton's role in Neptune's magnetosphere , 1994 .

[185]  L. Esposito,et al.  Origins of the rings of Uranus and Neptune: 2. Initial conditions and ring moon populations , 1993 .

[186]  R. Selesnick Magnetic field models from energetic particle data at Neptune , 1992 .

[187]  L. Esposito,et al.  Origins of the rings of Uranus and Neptune: 1. Statistics of satellite disruptions , 1992 .

[188]  Robert A. Jacobson,et al.  The masses of Uranus and its major satellites from Voyager tracking data and earth-based Uranian satellite data , 1992 .

[189]  M. Showalter,et al.  Structure and particle properties of Saturn's E Ring , 1991 .

[190]  J. Connerney,et al.  The magnetic field of Neptune , 1991 .

[191]  B. Conrath,et al.  The albedo, effective temperature, and energy balance of Neptune, as determined from Voyager data , 1991 .

[192]  L. Dones A recent cometary origin for Saturn's rings? , 1991 .

[193]  D. Banfield,et al.  A dynamical history of the inner Neptunian satellites , 1991 .

[194]  G. Schubert,et al.  Thermal and humidity winds in outer planet atmospheres , 1991 .

[195]  B. Buratti,et al.  Comparative global albedo and color maps of the Uranian satellites , 1991 .

[196]  R. H. Brown,et al.  Triton's Geyser-Like Plumes: Discovery and Basic Characterization , 1990, Science.

[197]  R. Kirk,et al.  Subsurface Energy Storage and Transport for Solar-Powered Geysers on Triton , 1990, Science.

[198]  A. McEwen,et al.  Surface and Airborne Evidence for Plumes and Winds on Triton , 1990, Science.

[199]  W. C. Tittemore Tidal heating of Ariel , 1990 .

[200]  T. Hill,et al.  Origin of Aurora and Airglow on the Night Side of Neptune , 1990 .

[201]  R. Selesnick Plasma convection in Neptune's magnetosphere , 1990 .

[202]  A. Cheng,et al.  Triton torus and Neptune aurora , 1990 .

[203]  B. Pettersen,et al.  Flare stars in star clusters, associations and the solar vicinity; Proceedings of the 137th IAU Symposium, Byurakan, Armenian SSR, Oct. 23-27, 1989 , 1990 .

[204]  J. Wisdom,et al.  Tidal evolution of the Uranian satellites: III. Evolution through the Miranda-Umbriel 3:1, Miranda-Ariel 5:3, and Ariel-Umbriel 2:1 mean-motion commensurabilities , 1990 .

[205]  A. Coustenis,et al.  The albedo, effective temperature, and energy balance of Uranus, as determined from Voyager IRIS data , 1990 .

[206]  J. Blamont,et al.  Ultraviolet Spectrometer Observations of Neptune and Triton , 1989, Science.

[207]  E. Miner,et al.  The Voyager 2 Encounter with the Neptunian System , 1989, Science.

[208]  S. K. Croft,et al.  Voyager 2 at Neptune: Imaging Science Results , 1989, Science.

[209]  A. C. Riddle,et al.  Voyager Planetary Radio Astronomy at Neptune , 1989, Science.

[210]  A. Cummings,et al.  Energetic Charged Particles in the Magnetosphere of Neptune , 1989, Science.

[211]  Fritz M. Neubauer,et al.  Magnetic Fields at Neptune , 1989, Science.

[212]  P. Rosen,et al.  Voyager radio occultation by Uranus' rings: I. Observational results , 1989 .

[213]  George W. Wetherill,et al.  Accumulation of a swarm of small planetesimals , 1989 .

[214]  S. Squyres,et al.  Solid-State Ice Volcanism on the Satellites of Uranus , 1988, Science.

[215]  Mario H. Acuna,et al.  The magnetic field of Uranus , 1987 .

[216]  R. McNutt,et al.  Voyager 2 plasma ion observations in the magnetosphere of Uranus , 1987 .

[217]  T. Johnson,et al.  Uranian ring photometry: Results from Voyager 2 , 1987 .

[218]  A. Cheng,et al.  Proton and oxygen plasmas at Uranus , 1987 .

[219]  R. McNutt,et al.  The magnetotail of Uranus , 1987 .

[220]  N. Ness,et al.  Magnetic field and current structures in the magnetosphere of Uranus , 1987 .

[221]  L. Soderblom,et al.  The moons of Uranus , 1987 .

[222]  Peter Bodenheimer,et al.  Calculations of the accretion and evolution of giant planets: The effects of solid cores , 1986 .

[223]  R. H. Brown,et al.  Voyager 2 in the Uranian System: Imaging Science Results , 1986, Science.

[224]  D. Staelin,et al.  Voyager 2 Radio Observations of Uranus , 1986, Science.

[225]  J. Connerney,et al.  Magnetic Fields at Uranus , 1986, Science.

[226]  J. Blamont,et al.  Ultraviolet Spectrometer Observations of Uranus , 1986, Science.

[227]  John D. Richardson,et al.  Plasmasphere formation in arbitrarily oriented magnetospheres , 1986 .

[228]  V. Vasyliūnas,et al.  The convection-dominated magnetosphere of Uranus , 1986 .

[229]  W. Hubbard 1981N1: A Neptune Arc? , 1986, Science.

[230]  J. Waite,et al.  Magnetospheric energization by interaction between planetary spin and the solar wind , 1984 .

[231]  M. E. Rassbach,et al.  Aurora on Uranus: A Faraday disc dynamo mechanism , 1983 .

[232]  Travis W. Hill,et al.  The magnetosphere of Uranus - Plasma sources, convection, and field configuration , 1983 .

[233]  J. Lunine,et al.  Formation of the Galilean satellites in a gaseous nebula , 1982 .

[234]  S. Tremaine,et al.  Sharp edges of planetary rings , 1982, Nature.

[235]  H. Mizuno Formation of the Giant Planets , 1980 .

[236]  R. S. Wolff,et al.  Plasma Observations Near Uranus: Initial Results from Voyager 2 , 1979, Science.

[237]  J. Burns,et al.  Gas drag in primordial circumplanetary envelopes: A mechanism for satellite capture , 1979 .

[238]  S. Tremaine,et al.  Towards a theory for the uranian rings , 1979, Nature.

[239]  S. Tremaine,et al.  The formation of the Cassini division in Saturn's rings , 1978 .

[240]  E. Dunham,et al.  The rings of Uranus , 1977, Nature.

[241]  T. Heppenheimer,et al.  New contributions to the problem of capture , 1977 .

[242]  A. Cameron,et al.  Hydrodynamic instability of the solar nebula in the presence of a planetary core , 1974 .

[243]  G. Colombo,et al.  On the formation of the outer satellite groups of Jupiter , 1971 .

[244]  G. Siscoe Two magnetic tail models for ‘Uranus’ , 1971 .

[245]  E. Bigg Influence of the Satellite Io on Jupiter's Decametric Emission , 1964, Nature.

[246]  H. Jeffreys The Relation of Cohesion to Roche's Limit , 1947 .

[247]  J. Chaufray,et al.  UV Exploration of the solar system Thematic Areas (Astro2020 Science White Paper) , 2020 .

[248]  O. Mousis,et al.  Determining the origin of the building blocks of the Ice Giants based on analogue measurements from comets , 2019, Monthly Notices of the Royal Astronomical Society.

[249]  R. Clark,et al.  Enceladus and the Icy Moons of Saturn , 2018 .

[250]  W. McKinnon Chapter 40 – Triton , 2014 .

[251]  R. Clark,et al.  Ring Particle Composition and Size Distribution , 2009 .

[252]  E. Marouf,et al.  The Structure of Saturn's Rings , 2009 .

[253]  H. Hammel,et al.  Evolution of the dusty rings of Uranus , 2006 .

[254]  S. Atreya,et al.  Coupled Clouds and Chemistry of the Giant Planets — A Case for Multiprobes , 2005 .

[255]  S. Atreya,et al.  Coupled Clouds and Chemistry of the Giant Planets— A Case for Multiprobes , 2005 .

[256]  M. Kivelson,et al.  Measurements: A Stronger Case for a Subsurface Ocean at Europa , 2000 .

[257]  Bradford A. Smith,et al.  Stability of Neptune's ring arcs in question , 1999, Nature.

[258]  Dale P. Cruikshank,et al.  Neptune and Triton , 1995 .

[259]  Fran Bagenal,et al.  Giant planet magnetospheres , 1992 .

[260]  J. Burns,et al.  Particle properties and processes in Uranus' rings. , 1991 .

[261]  S. Krimigis,et al.  Energetic particles at Uranus , 1991 .

[262]  G. Ye A Study of Uranian Magnetospheric Convection. , 1990 .

[263]  J. Pollack,et al.  Interactions of planetesimals with protoplanetary atmospheres , 1988 .