Atomic layer deposited borosilicate glass microchannel plates for large area event counting detectors

Abstract Borosilicate glass micro-capillary array substrates with 20 μm and 40 μm pores have been deposited with resistive, and secondary electron emissive, layers by atomic layer deposition to produce functional microchannel plates. Device formats of 32.7 mm and 20 cm square have been fabricated and tested in analog and photon counting modes. The tests show amplification, imaging, background rate, pulse shape and lifetime characteristics that are comparable to standard glass microchannel plates. Large area microchannel plates of this type facilitate the construction of 20 cm format sealed tube sensors with strip-line readouts that are being developed for Cherenkov light detection. Complementary work has resulted in Na 2 KSb bialkali photocathodes with peak quantum efficiency of 25% being made on borosilicate glass. Additionally GaN (Mg) opaque photocathodes have been successfully made on borosilicate microchannel plates.