Facet‐Dependent Interfacial and Photoelectrochemical Properties of TiO2 Nanoparticles

[1]  G. D. Di Liberto,et al.  pH- and Facet-Dependent Surface Chemistry of TiO2 in Aqueous Environment from First Principles , 2023, ACS applied materials & interfaces.

[2]  M. Próchniak,et al.  Electrode Surface Coverage with Deposit Generated Under Conditions of Electrochemical Nucleation and Growth. A Mathematical Analysis , 2022, Electrocatalysis.

[3]  Rengui Li,et al.  Determination of Crystallographic Orientation and Exposed Facets of Titanium Oxide Nanocrystals , 2022, Advanced materials.

[4]  R. Zanella,et al.  Behavior of the Energy Levels of Hydrogen Titanate Nanotubes Decorated with Au, Ag, Mn, and Ni and Their Effect on the H2 Evolution , 2022, Topics in Catalysis.

[5]  Jiahao Chen,et al.  Surface-Terminated Hydroxyl Groups for Deciphering the Facet-Dependent Photocatalysis of Anatase TiO2. , 2022, ACS applied materials & interfaces.

[6]  N. Ohtsu,et al.  XPS spectral analysis for a multiple oxide comprising NiO, TiO2, and NiTiO3 , 2020 .

[7]  Mohammad Hossein Davood Abadi Farahani,et al.  A review on the synthesis of the various types of anatase TiO2 facets and their applications for photocatalysis , 2020 .

[8]  A. Hensel,et al.  Shape-controlling effects of hydrohalic and carboxylic acids in TiO2 nanoparticle synthesis. , 2020, The Journal of chemical physics.

[9]  Hong Wang,et al.  Correlation between the H2 response and its oxidation over TiO2 and N doped TiO2 under UV irradiation induced by Fermi level , 2019, Applied Catalysis B: Environmental.

[10]  M. Naushad,et al.  Highly efficient adsorption of strontium ions by carbonated mesoporous TiO2 , 2019, Journal of Molecular Liquids.

[11]  Ritesh Kumar,et al.  Tuning the electronic band alignment properties of TiO2 nanotubes by boron doping , 2019, Results in Physics.

[12]  F. J. Kadhim,et al.  Photocatalytic activity of anatase titanium dioxide nanostructures prepared by reactive magnetron sputtering technique , 2019, Optical and Quantum Electronics.

[13]  W. Macyk,et al.  How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. , 2018, The journal of physical chemistry letters.

[14]  W. Jaegermann,et al.  Fermi Level Positions and Induced Band Bending at Single Crystalline Anatase (101) and (001) Surfaces: Origin of the Enhanced Photocatalytic Activity of Facet Engineered Crystals , 2018, Advanced Energy Materials.

[15]  W. Jaegermann,et al.  The Work Function of TiO2 , 2018, Surfaces.

[16]  Chi-Young Lee,et al.  Enhanced Photocatalysis from Truncated Octahedral Bipyramids of Anatase TiO2 with Exposed {001}/{101} Facets , 2018, ACS omega.

[17]  S. Muniyappan,et al.  Conventional hydrothermal synthesis of titanate nanotubes: Systematic discussions on structural, optical, thermal and morphological properties , 2017 .

[18]  S. Roy,et al.  Structure sensitive photocatalytic reduction of nitroarenes over TiO2 , 2017, Scientific Reports.

[19]  L. Kavan,et al.  Synergetic Surface Sensitivity of Photoelectrochemical Water Oxidation on TiO2 (Anatase) Electrodes , 2017 .

[20]  P. Bhargava,et al.  Tuning flat band potential of TiO2 using an electrolyte additive to enhance open circuit voltage and minimize current loss in dye sensitized solar cells , 2016 .

[21]  G. Granozzi,et al.  Unraveling the Multiple Effects Originating the Increased Oxidative Photoactivity of {001}-Facet Enriched Anatase TiO2. , 2016, ACS applied materials & interfaces.

[22]  Shaopeng Li,et al.  Direct Observation of Charge Separation on Anatase TiO2 Crystals with Selectively Etched {001} Facets. , 2016, Journal of the American Chemical Society.

[23]  G. Spoto,et al.  CO2 Capture by TiO2 Anatase Surfaces: A Combined DFT and FTIR Study , 2014 .

[24]  A. Lycourghiotis,et al.  Titanium dioxide (anatase and rutile): surface chemistry, liquid-solid interface chemistry, and scientific synthesis of supported catalysts. , 2014, Chemical reviews.

[25]  Matteo Cargnello,et al.  Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals. , 2014, Chemical reviews.

[26]  Jian Pan,et al.  Titanium dioxide crystals with tailored facets. , 2014, Chemical reviews.

[27]  Lixia Sang,et al.  TiO2 nanoparticles as functional building blocks. , 2014, Chemical reviews.

[28]  N. Shanmugam,et al.  Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles--synthesized via sol-gel route. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[29]  Po-Chin Chen,et al.  Alkali metal ion assisted synthesis of faceted anatase TiO2 , 2013 .

[30]  Debabrata Pradhan,et al.  Synergy of low-energy {101} and high-energy {001} TiO₂ crystal facets for enhanced photocatalysis. , 2013, ACS nano.

[31]  Min Liu,et al.  Is Photooxidation Activity of {001} Facets Truly Lower Than That of {101} Facets for Anatase TiO2 Crystals? , 2012 .

[32]  P. Billik,et al.  On the true morphology of highly photoactive anatase TiO2 nanocrystals , 2012 .

[33]  R. Scotti,et al.  Photogenerated defects in shape-controlled TiO2 anatase nanocrystals: a probe to evaluate the role of crystal facets in photocatalytic processes. , 2011, Journal of the American Chemical Society.

[34]  Qiyuan He,et al.  Nucleation Mechanism of Electrochemical Deposition of Cu on Reduced Graphene Oxide Electrodes , 2011 .

[35]  T. Tachikawa,et al.  Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. , 2011, Journal of the American Chemical Society.

[36]  Charles C. Sorrell,et al.  Review of the anatase to rutile phase transformation , 2011 .

[37]  Charles A. Roberts,et al.  Characterization of Hydrothermally Prepared Titanate Nanotube Powders by Ambient and In Situ Raman Spectroscopy , 2010 .

[38]  R. Renganathan,et al.  Photosensitization of colloidal TiO2 nanoparticles with phycocyanin pigment. , 2009, Journal of colloid and interface science.

[39]  A. Sahari,et al.  Electrochemical nucleation and growth of copper deposition onto FTO and n-Si(1 0 0) electrodes , 2009 .

[40]  Tao Gao,et al.  Crystal structures of titanate nanotubes: a Raman scattering study. , 2009, Inorganic chemistry.

[41]  T. Chen,et al.  Surface Phases of TiO2 Nanoparticles Studied by UV Raman Spectroscopy and FT-IR Spectroscopy , 2008 .

[42]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[43]  A. Cornet,et al.  Insights into the Structural and Chemical Modifications of Nb Additive on TiO2 Nanoparticles , 2004 .

[44]  Yun‐Hong Zhang,et al.  ATR-FTIR spectroscopic studies on aqueous LiClO4, NaClO4, and Mg(ClO4)2 solutions , 2004 .

[45]  M. Matsumura,et al.  Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions , 2002 .

[46]  T. Madey,et al.  TiO2 by XPS , 1996 .

[47]  B. Scharifker,et al.  Theoretical and experimental studies of multiple nucleation , 1983 .