Genomics and the biology of parasites

Despite the advances of modern medicine, the threat of chronic illness, disfigurement, or death that can result from parasitic infection still affects the majority of the world population, retarding economic development. For most parasitic diseases, current therapeutics often leave much to be desired in terms of administration regime, toxicity, or effectiveness and potential vaccines are a long way from market. Our best prospects for identifying new targets for drug, vaccine, and diagnostics development and for dissecting the biological basis of drug resistance, antigenic diversity, infectivity and pathology lie in parasite genome analysis, and international mapping and gene discovery initiatives are under way for a variety of protozoan and helminth parasites. These are far from ideal experimental organisms, and the influence of biological and genomic characteristics on experimental approaches is discussed, progress is reviewed and future prospects are examined. BioEssays 1999;21:131–147. © 1999 John Wiley & Sons, Inc.

[1]  G. Gasic,et al.  Epidemiology of Chagas's Disease in Chile. , 1940 .

[2]  J. Defreitas [Epidemiology of Chagas' disease]. , 1961 .

[3]  B. Lewin Units of transcription and translation: Sequence components of heterogeneous nuclear RNA and messenger RNA , 1975, Cell.

[4]  J. Broach,et al.  The Molecular biology of the yeast saccharomyces, life cycle and inheritance , 1981 .

[5]  Somatic chromosomes of Schistosoma rodhaini, S. mattheei, and S. intercalatum. , 1981, The Journal of parasitology.

[6]  F. Grosveld,et al.  An analysis of cosmid clones of nuclear DNA from Trypanosoma brucei shows that the genes for variant surface glycoproteins are clustered in the genome. , 1982, Nucleic acids research.

[7]  L. Ash,et al.  Karyotypes of Brugia pahangi and Brugia malayi (Nematoda: Filarioidea). , 1983, The Journal of parasitology.

[8]  J. Dame,et al.  Mung bean nuclease cleaves Plasmodium genomic DNA at sites before and after genes. , 1984, Science.

[9]  L. Simpson,et al.  Specific cleavage of kinetoplast minicircle DNA from Leishmania tarentolae by mung bean nuclease and identification of several additional minicircle sequence classes , 1986, Nucleic Acids Res..

[10]  Mung bean nuclease cleaves preferentially at the boundaries of variant surface glycoprotein gene transpositions in trypanosome DNA. , 1986, The Journal of biological chemistry.

[11]  D. Rollinson,et al.  The biology of schistosomes. From genes to latrines. , 1988, Parasitology.

[12]  David Hirsh,et al.  A trans-spliced leader sequence on actin mRNA in C. elegans , 1987, Cell.

[13]  T. Burkot,et al.  Genetic analysis of the human malaria parasite Plasmodium falciparum. , 1987, Science.

[14]  D. Rollinson,et al.  Natural history of transmission and schistosome interactions. , 1987 .

[15]  T. McCutchan,et al.  A histidine-rich protein gene marks a linkage group favored strongly in a genetic cross of Plasmodium falciparum , 1987, Cell.

[16]  T. McCutchan,et al.  Mung bean nuclease exhibits a generalized gene-excision activity upon purified Plasmodium falciparum genomic DNA. , 1988, Nucleic acids research.

[17]  J. Weber,et al.  Molecular biology of malaria parasites. , 1988, Experimental parasitology.

[18]  J. Bruce,et al.  Conventional Giemsa-stained and C-banded chromosomes of seven strains of Schistosoma mansoni. , 1989, The Journal of parasitology.

[19]  A. Rajkovic,et al.  A spliced leader is present on a subset of mRNAs from the human parasite Schistosoma mansoni. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Thomas E. Wellems,et al.  Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross , 1990, Nature.

[21]  K. Yasuraoka,et al.  Dynamic changes of DNA sequences in Schistosoma mansoni in the course of development , 1990, Parasitology.

[22]  A. Kerlavage,et al.  Complementary DNA sequencing: expressed sequence tags and human genome project , 1991, Science.

[23]  L. V. D. van der Ploeg,et al.  Chromosome structure: DNA nucleotide sequence elements of a subset of the minichromosomes of the protozoan Trypanosoma brucei , 1991, Molecular and cellular biology.

[24]  J. Ravetch,et al.  Characterization of yeast artificial chromosomes from Plasmodium falciparum: construction of a stable, representative library and cloning of telomeric DNA fragments. , 1992, Genomics.

[25]  T. Wellems,et al.  An RFLP map of the Plasmodium falciparum genome, recombination rates and favored linkage groups in a genetic cross. , 1992, Molecular and biochemical parasitology.

[26]  P. Bastien,et al.  Molecular karyotype analysis in Leishmania. , 1992, Sub-cellular biochemistry.

[27]  J. Boothroyd,et al.  Genomic organization and context of a trypanosome variant surface glycoprotein gene family. , 1992, Journal of molecular biology.

[28]  A. Schneider,et al.  Splicing and 3'-processing of the tyrosine tRNA of Trypanosoma brucei. , 1993, The Journal of biological chemistry.

[29]  Y. Iwamura,et al.  Host-related DNA sequences are localized in the body of schistosome adults , 1993, Parasitology.

[30]  J. Ravetch,et al.  Transcriptional differences in polymorphic and conserved domains of a complete cloned P. falciparum chromosome , 1993, Nature.

[31]  D. Cioli,et al.  Schistosoma mansoni: genetic complementation analysis shows that two independent hycanthone/oxamniquine-resistant strains are mutated in the same gene. , 1993, Experimental parasitology.

[32]  P. Myler Molecular variation in trypanosomes. , 1993, Acta tropica.

[33]  Hans Lehrach,et al.  High resolution cosmid and P1 maps spanning the 14 Mb genome of the fission yeast S. pombe , 1993, Cell.

[34]  C. Combes,et al.  [Arguments for the modification of the genome (introgression) of the human parasite Schistosoma haematobium by genes from S. bovis, in Niger]. , 1993, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[35]  G. Reddy,et al.  Gene sequence tags from Plasmodium falciparum genomic DNA fragments prepared by the "genease" activity of mung bean nuclease. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[36]  P. Das,et al.  An approach to functional complementation by introduction of large DNA fragments into Trypanosoma cruzi and Leishmania donovani using a cosmid shuttle vector. , 1994, Molecular and biochemical parasitology.

[37]  G. Reddy,et al.  Analysis of expressed sequence tags from Plasmodium falciparum. , 1994, Molecular and biochemical parasitology.

[38]  B. Ruef,et al.  Expression and evolution of members of the Trypanosoma cruzi trypomastigote surface antigen multigene family. , 1994, Molecular and biochemical parasitology.

[39]  J. Gosden,et al.  Chromosome analysis protocols , 1994 .

[40]  J. Carlton,et al.  Conserved location of genes on polymorphic chromosomes of four species of malaria parasites. , 1994, Molecular and biochemical parasitology.

[41]  Chromosome dissection and cloning. , 1994, Methods in molecular biology.

[42]  J. Ravetch,et al.  Organization of chromosomes in Plasmodium falciparum: a model for generating karyotypic diversity. , 1994, Parasitology today.

[43]  J. Inselburg,et al.  Establishing a physical map of chromosome No. 4 of Plasmodium falciparum. , 1994, Molecular and biochemical parasitology.

[44]  M I Cano,et al.  Molecular karyotype of clone CL Brener chosen for the Trypanosoma cruzi genome project. , 1995, Molecular and biochemical parasitology.

[45]  J. Foster,et al.  The Plasmodium falciparum genome project: A resource for researchers , 1995 .

[46]  T. Triglia,et al.  A YAC contig map of Plasmodium falciparum chromosome 4: characterization of a DNA amplification between two recently separated isolates. , 1995, Genomics.

[47]  A. Frasch,et al.  Chromosome specific markers reveal conserved linkage groups in spite of extensive chromosomal size variation in Trypanosoma cruzi. , 1995, Molecular and biochemical parasitology.

[48]  The Significance of genetic exchange in trypanosomes , 1995 .

[49]  S. L. Le Blancq,et al.  Parasitism and chromosome dynamics in protozoan parasites: is there a connection? , 1995, Molecular and biochemical parasitology.

[50]  T. Nilsen,et al.  Molecular Biology of Protozoan and Helminth Parasites , 1995 .

[51]  G. Reddy Determining the sequence of parasite DNA , 1995 .

[52]  H. Yonekawa,et al.  Detection of host DNA sequences including the H-2 locus of the major histocompatibility complex in schistosomes , 1995, Parasitology.

[53]  C. Alonso,et al.  Characterization of a non-long terminal repeat retrotransposon cDNA (L1Tc) from Trypanosoma cruzi: homology of the first ORF with the ape family of DNA repair enzymes. , 1995, Journal of molecular biology.

[54]  P. Bastien,et al.  Conservation among Old World Leishmania species of six physical linkage groups defined in Leishmania infantum small chromosomes. , 1995, Molecular and biochemical parasitology.

[55]  V. Sheffield,et al.  cDNA expressed sequence tags of Trypanosoma brucei rhodesiense provide new insights into the biology of the parasite. , 1995, Molecular and biochemical parasitology.

[56]  M. Kwa,et al.  Beta-tubulin genes from the parasitic nematode Haemonchus contortus modulate drug resistance in Caenorhabditis elegans. , 1995, Journal of molecular biology.

[57]  G. Franco,et al.  Yeast artificial chromosome (YAC)-based genome mapping of Schistosoma mansoni. , 1995, Molecular and biochemical parasitology.

[58]  G. Frank,et al.  Vaccine research and development for the prevention of filarial nematode infections. , 1995, Pharmaceutical biotechnology.

[59]  M. Blaxter The filarial genome network , 1995 .

[60]  John S. Rigden J. Robert Oppenheimer: Before the War , 1995 .

[61]  H. Hirai,et al.  FISH techniques for constructing physical maps on schistosome chromosomes. , 1995, Parasitology today.

[62]  G. Cook Adverse Effects of Chemotherapeutic Agents Used in Tropical Medicine , 1995, Drug safety.

[63]  C. Bandi,et al.  Molecular evidence for a close relative of the arthropod endosymbiont Wolbachia in a filarial worm. , 1995, Molecular and biochemical parasitology.

[64]  M. Adams,et al.  Identification of new Schistosoma mansoni genes by the EST strategy using a directional cDNA library. , 1995, Gene.

[65]  Miklós Müller,et al.  Biochemistry and Molecular Biology of Parasites , 1995 .

[66]  Third World participation in genome projects. , 1996, Trends in biotechnology.

[67]  M. Soares,et al.  Normalization and subtraction: two approaches to facilitate gene discovery. , 1996, Genome research.

[68]  R. Bergquist,et al.  Progress on vaccines against parasites. , 1996, Developments in biological standardization.

[69]  Ronald W. Davis,et al.  Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar–coding strategy , 1996, Nature Genetics.

[70]  M. Blaxter,et al.  Genes expressed in Brugia malayi infective third stage larvae. , 1996, Molecular and biochemical parasitology.

[71]  X. Su,et al.  Current status of the Plasmodium falciparum genome project. , 1996, Molecular and biochemical parasitology.

[72]  A. Cowman,et al.  The var genes of Plasmodium falciparum are located in the subtelomeric region of most chromosomes. , 1996, The EMBO journal.

[73]  J. Blackwell,et al.  Unravelling the Leishmania genome. , 1996, Current opinion in genetics & development.

[74]  P. Brindley,et al.  Host-like sequences in the schistosome genome. , 1996, Parasitology today.

[75]  M. Levick,et al.  An expressed sequence tag analysis of a full-length, spliced-leader cDNA library from Leishmania major promastigotes. , 1996, Molecular and biochemical parasitology.

[76]  P. Wincker,et al.  The Leishmania genome comprises 36 chromosomes conserved across widely divergent human pathogenic species. , 1996, Nucleic acids research.

[77]  J. Hanke,et al.  Mapping the Trypanosoma cruzi genome: analyses of representative cosmid libraries. , 1996, BioTechniques.

[78]  J. Muñoz,et al.  [Lost Science in the Third World]. , 1996, Gaceta medica de Mexico.

[79]  D. McManus,et al.  Schistosomiasis vaccine development--the current picture. , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[80]  A. Ivens,et al.  Parasite genome analysis. A global map of the Leishmania major genome: prelude to genomic sequencing. , 1997, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[81]  D. Paslier,et al.  The Trypanosoma cruzi genome initiative. , 1997, Parasitology today.

[82]  Funding Sequencing Efforts , 1997, Science.

[83]  J. F. da Silveira,et al.  Parasite genome projects and the Trypanosoma cruzi genome initiative. , 1997, Memorias do Instituto Oswaldo Cruz.

[84]  T. Urményi,et al.  Towards the physical map of the Trypanosoma cruzi nuclear genome: construction of YAC and BAC libraries of the reference clone T. cruzi CL-Brener. , 1997, Memorias do Instituto Oswaldo Cruz.

[85]  J. F. da Silveira,et al.  Trypanosoma cruzi genome project: biological characteristics and molecular typing of clone CL Brener. , 1997, Acta tropica.

[86]  B. Kalinna DNA vaccines for parasitic infections , 1997, Immunology and cell biology.

[87]  T. Urményi,et al.  Identification of transcribed sequences (ESTs) in the Trypanosoma cruzi genome project. , 1997, Memorias do Instituto Oswaldo Cruz.

[88]  J. Donelson,et al.  A survey of the Trypanosoma brucei rhodesiense genome using shotgun sequencing. , 1997, Molecular and biochemical parasitology.

[89]  J. Kelly,et al.  Genetic transformation of parasitic protozoa. , 1997, Advances in parasitology.

[90]  J. Blackwell Progress in the Leishmania genome project , 1997 .

[91]  J. Blackwell Parasite genome analysis. Progress in the Leishmania genome project. , 1997, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[92]  D. Johnston The WHO/UNDP/World Bank Schistosoma Genome initiative: Current status , 1997 .

[93]  D. Butler Funding assured for international malaria sequencing project , 1997, Nature.

[94]  S. Melville Parasite genome analysis. Genome research in Trypanosoma brucei: chromosome size polymorphism and its relevance to genome mapping and analysis. , 1997, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[95]  Internet resources for the parasite genome projects. , 1997, Trends in genetics : TIG.

[96]  A. Cowman,et al.  A YAC contig and high resolution restriction map of chromosome 3 from Plasmodium falciparum. , 1997, Molecular and biochemical parasitology.

[97]  A. Camargo,et al.  Expression of var genes located within polymorphic subtelomeric domains of Plasmodium falciparum chromosomes , 1997, Molecular and cellular biology.

[98]  A unified nomenclature for filarial genes. , 1997, Parasitology today.

[99]  H. Lorenzi,et al.  The Trypanosoma cruzi genome project: nuclear karyotype and gene mapping of clone CL Brener. , 1997, Memorias do Instituto Oswaldo Cruz.

[100]  P. Brindley,et al.  A retrotransposon of the non-long terminal repeat class from the human blood fluke Schistosoma mansoni. Similarities to the chicken-repeat-1-like elements of vertebrates. , 1997, Molecular biology and evolution.

[101]  P. Wincker,et al.  A direct method for the chromosomal assignment of DNA markers in Leishmania. , 1997, Gene.

[102]  Túlio Marcos Santos,et al.  Evaluation of cDNA libraries from different developmental stages of Schistosoma mansoni for production of expressed sequence tags (ESTs). , 1997, DNA research : an international journal for rapid publication of reports on genes and genomes.

[103]  F. Cox Designer vaccines for parasitic diseases. , 1997, International journal for parasitology.

[104]  K. Haldar,et al.  Expression of green fluorescent protein in Plasmodium falciparum. , 1997, Molecular and biochemical parasitology.

[105]  S. Melville,et al.  A proposal for karyotype nomenclature in Trypanosoma brucei. , 1997, Parasitology today.

[106]  A J Simpson,et al.  Minilibraries constructed from cDNA generated by arbitrarily primed RT-PCR: an alternative to normalized libraries for the generation of ESTs from nanogram quantities of mRNA. , 1997, Gene.

[107]  F. Bringaud,et al.  Conserved organization of genes in trypanosomatids. , 1998, Molecular and biochemical parasitology.

[108]  T R Bürglin,et al.  Caenorhabditis elegans as a model for parasitic nematodes. , 1998, International journal for parasitology.

[109]  J. Blackwell,et al.  The molecular karyotype of the megabase chromosomes of Trypanosoma brucei and the assignment of chromosome markers. , 1998, Molecular and biochemical parasitology.

[110]  G. Cross,et al.  Regulation of vsg expression site transcription and switching in Trypanosoma brucei. , 1998, Molecular and biochemical parasitology.

[111]  J. Blackwell,et al.  Genetic Control of Immune Response to Recombinant Antigens Carried by an Attenuated Salmonella typhimuriumVaccine Strain: Nramp1 Influences T-Helper Subset Responses and Protection against Leishmanial Challenge , 1998, Infection and Immunity.

[112]  S. Melville The african trypanosome genome project:focus on the future. , 1998, Parasitology today.

[113]  Resources available from the african trypanosome genome project. , 1998, Parasitology today.

[114]  E Pays,et al.  Expression and function of surface proteins in Trypanosoma brucei. , 1998, Molecular and biochemical parasitology.

[115]  J D Hoheisel,et al.  Hybridization mapping of Trypanosoma cruzi chromosomes III and IV , 1998, Electrophoresis.

[116]  J. Hanke,et al.  Selective generation of chromosomal cosmid libraries within the Trypanosoma cruzi genome project , 1998, Electrophoresis.

[117]  D. Sullivan,et al.  Identification and Characterization of an Unusual Double Serine/Threonine Protein Phosphatase 2C in the Malaria ParasitePlasmodium falciparum * , 1998, The Journal of Biological Chemistry.

[118]  J. Carlton,et al.  Gene synteny in species of Plasmodium. , 1998, Molecular and biochemical parasitology (Print).

[119]  T. Godal,et al.  Malaria vaccine development: current status. , 1998, Parasitology today.

[120]  A. Ivens,et al.  A physical map of the Leishmania major Friedlin genome. , 1998, Genome research.

[121]  Morten Østergaard,et al.  Human and mouse proteomic databases: novel resources in the protein universe , 1998, FEBS letters.

[122]  S. Sunkin,et al.  Leishmania major Friedlin chromosome 1 has an unusual distribution of protein-coding genes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.