Petrogenesis of lunar troctolites

Models of petrogenesis for lunar troctolites are severely constrained by the high Mg* (>88) values of the most primitive members of the Mg-rich suite. Melts derived by partial melting of olivine cumulates to the lunar magma ocean have high Mg* but are strongly undersaturated with respect to plagioclase. Assimilation of lunar crust cannot bring these melts to the plagioclase liquidus without unduly reducing the Mg* values of olivine. Partial melts derived by melting a Iherzolite primitive interior have higher normative plagioclase contents but require sources with Mg* > 90. More terrestrial-like Mg* (∼88) values are permitted if rising thermal plumes are capable of entraining the most Mg-rich cumulates of the magma ocean. The Mg* values of lunar troctolites may, therefore, reflect a hybrid source composed of primitive mantle and Mg-rich cumulates of the magma ocean. Higher Mg* values may also arise from the reduction of small amounts of FeO to Fe. Alternatively, the parent magmas to lunar troctolites may be impact melts of the anorthositic crust and the Mg-rich dunite cumulates of the magma ocean; the latter were brought to the upper mantle during the overturn of the unstable cumulate pile of the magma ocean.

[1]  R. Grieve,et al.  The Sudbury Structure' Controversial or Misunderstood? , 1991 .

[2]  E. Watson,et al.  Chemical Diffusion in Magmas: An Overview of Experimental Results and Geochemical Applications , 1991 .

[3]  G. Ryder Lunar ferroan anorthosites and mare basalt sources: The mixed connection , 1991 .

[4]  H. Dick Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism , 1989, Geological Society, London, Special Publications.

[5]  D. Yuen,et al.  Steady state double-diffusive convection in magma chambers heated from below. , 1987 .

[6]  Youxue Zhang,et al.  Diffusive crystal dissolution , 1989 .

[7]  J. Delano Pristine lunar glasses: Criteria, data, and implications , 1986 .

[8]  O. James Rocks of the early lunar crust , 1980 .

[9]  M. Norman,et al.  A summary of the petrology and geochemistry of pristine highlands rocks , 1979 .

[10]  P. H. Warren,et al.  The ferroan-anorthositic suite, the extent of primordial lunar melting, and the bulk composition of the moon , 1993 .

[11]  T. Grove,et al.  Primary magmas of mid-ocean ridge basalts 2. Applications , 1992 .

[12]  R. Evans,et al.  Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29 degrees N to 73 degrees N , 1983 .

[13]  J. Longhi Origin of picritic green glass magmas by polybaric fractional fusion , 1992 .

[14]  P. H. Warren,et al.  Anorthosite assimilation and the origin of the Mg/Fe‐related bimodality of pristine moon rocks: Support for the magmasphere hypothesis , 1986 .

[15]  D. McKenzie The extraction of magma from the crust and mantle , 1985 .

[16]  P. C. Hess,et al.  Assimilation by lunar mare basalts: Melting of crustal material and dissolution of anorthite , 1994 .

[17]  R. Wiebe Origins of Igneous Rocks , 1989 .

[18]  S. Hughes,et al.  Petrogenetic modeling of 74220 high-Ti orange volcanic glasses and the Apollo 11 and 17 high-Ti mare basalts , 1989 .

[19]  B. Marsh On Convective Style and Vigor in Sheet-like Magma Chambers , 1989 .

[20]  M. Bickle,et al.  The Volume and Composition of Melt Generated by Extension of the Lithosphere , 1988 .

[21]  J. Gill,et al.  Short-Lived Radioactivity and Magma Genesis , 1992, Science.

[22]  P. Warren Lunar anorthosites and the magma-ocean plagioclase-flotation hypothesis; importance of FeO enrichment in the parent magma , 1990 .

[23]  P. Richet,et al.  Thermochemical Properties of Silicate Glasses and Liquids: A Review (Paper 5R0710) , 1986 .

[24]  P. H. Warren,et al.  The bulk-Moon MgO/FeO ratio: A highlands perspective , 1984 .

[25]  W. Bryan,et al.  Fractionation of pyroxene-phyric MORB at low pressure: An experimental study , 1983 .

[26]  C. Pieters,et al.  Copernicus Crater Central Peak: Lunar Mountain of Unique Composition , 1982, Science.

[27]  John H. Jones,et al.  A three-component model for the bulk composition of the Moon , 1989 .

[28]  Donald L. Turcotte,et al.  Geodynamics : applications of continuum physics to geological problems , 1982 .

[29]  P. Warren A Concise Compilation of Petrologic Information on Possibly Pristine Nonmare Moon Rocks , 1993 .

[30]  R. W. Griffiths,et al.  Stirring and structure in mantle starting plumes , 1990 .

[31]  P. Warren,et al.  Pristine moon rocks - Apollo 17 anorthosites , 1991 .

[32]  S. Solomon,et al.  Magma Oceanography: 1. Thermal Evolution , 1977 .

[33]  D. Walker,et al.  Xenolith digestion in large magma bodies , 1985 .

[34]  H. O’Neill The origin of the moon and the early history of the earth—A chemical model. Part 1: The moon , 1991 .

[35]  H. Huppert,et al.  Melting the roof of a chamber containing a hot, turbulently convecting fluid , 1988, Journal of Fluid Mechanics.

[36]  P. Ulmer The dependence of the Fe2+-Mg cation-partitioning between olivine and basaltic liquid on pressure, temperature and composition , 1989 .

[37]  T. Ahrens,et al.  The equation of state of a molten komatiite: 1 Shock wave compression to 36 GPa , 1991 .