On the harmonic index and the chromatic number of a graph
暂无分享,去创建一个
Hanyuan Deng | S. K. Ayyaswamy | S. Balachandran | Yanamandram B. Venkatakrishnan | Y. B. Venkatakrishnan | H. Deng | S. Ayyaswamy | S. Balachandran
[1] Hanyuan Deng,et al. On the sum-connectivity index of cacti , 2011, Math. Comput. Model..
[2] Bo Zhou,et al. On general sum-connectivity index , 2010 .
[3] M. Randic. Characterization of molecular branching , 1975 .
[4] Siemion Fajtlowicz,et al. On conjectures of Graffiti , 1988, Discret. Math..
[5] Bo Zhou,et al. On a novel connectivity index , 2009 .
[6] Lingping Zhong,et al. The harmonic index for graphs , 2012, Appl. Math. Lett..
[7] Odile Favaron,et al. Some eigenvalue properties in graphs (conjectures of Graffiti - II) , 1993, Discret. Math..
[8] Bo Zhou,et al. Minimum sum-connectivity indices of trees and unicyclic graphs of a given matching number , 2010 .
[9] Bo Zhou,et al. On Sum-Connectivity Index of Bicyclic Graphs , 2009, 0909.4577.
[10] Bo Zhou,et al. Minimum general sum-connectivity index of unicyclic graphs , 2010 .
[11] Bo Zhou,et al. On the general sum-connectivity index of trees , 2011, Appl. Math. Lett..
[12] Pierre Hansen,et al. Variable neighborhood search for extremal graphs. 23. On the Randic index and the chromatic number , 2009, Discret. Math..
[13] Bo Zhou,et al. Sum-connectivity index of molecular trees , 2010 .
[14] Bo Zhou,et al. Comparison between the sum-connectivity index and product-connectivity index for benzenoid hydrocarbons , 2009 .