Impact of climate change and variability on the global oceanic sink of CO2

About one quarter of the CO2 emitted to the atmosphere by human activities is absorbed annually by the ocean. All the processes that influence the oceanic uptake of CO2 are controlled by climate. Hence changes in climate (both natural and human-induced) are expected to alter the uptake of CO2 by the ocean. However, available information that constrains the direction, magnitude, or rapidity of the response of ocean CO2 to changes in climate is limited. We present an analysis of oceanic CO2 trends for 1981 to 2007 from data and a model. Our analysis suggests that the global ocean responded to recent changes in climate by outgassing some preindustrial carbon, in part compensating the oceanic uptake of anthropogenic CO2. Using a model, we estimate that climate change and variability reduced the CO2 uptake by 12% compared to a simulation where constant climate is imposed, and offset 63% of the trend in response to increasing atmospheric CO2 alone. The response is caused by changes in wind patterns and ocean warming, with important nonlinear effects that amplify the response of oceanic CO2 to changes in climate by > 30%.

[1]  C. D. Keeling,et al.  Seasonal and long‐term dynamics of the upper ocean carbon cycle at Station ALOHA near Hawaii , 2004 .

[2]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[3]  R. Sepanski,et al.  TRENDS '90: A compendium of data on global change , 1991 .

[4]  Richard A. Feely,et al.  A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP) , 2004 .

[5]  Corinne Le Quéré,et al.  Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks , 2007, Proceedings of the National Academy of Sciences.

[6]  Robert Atlas,et al.  A Multiyear Global Surface Wind Velocity Dataset Using SSM/I Wind Observations , 1996 .

[7]  Andrew J. Watson,et al.  A variable and decreasing sink for atmospheric CO2 in the North Atlantic , 2007 .

[8]  R. Feely,et al.  Decadal change of the surface water pCO2 in the North Pacific: A synthesis of 35 years of observations , 2006 .

[9]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[10]  Gurvan Madec,et al.  A global ocean mesh to overcome the North Pole singularity , 1996 .

[11]  Pieter P. Tans,et al.  Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network , 1994 .

[12]  R. Feely,et al.  Spatial variability and decadal trend of the oceanic CO2 in the western equatorial Pacific warm/fresh water , 2009 .

[13]  C. S. Wong,et al.  Climatological mean and decadal change in surface ocean pCO2, and net seaair CO2 flux over the global oceans , 2009 .

[14]  J. Fyfe,et al.  The Arctic and Antarctic oscillations and their projected changes under global warming , 1999 .

[15]  Casper Labuschagne,et al.  Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change , 2007, Science.

[16]  C. D. Keeling,et al.  Interannual Variability in the North Atlantic Ocean Carbon Sink , 2002, Science.

[17]  David W. J. Thompson,et al.  Interpretation of Recent Southern Hemisphere Climate Change , 2002, Science.

[18]  Robert Atlas,et al.  A New Cross-Calibrated, Multi-Satellite Ocean Surface Wind Product , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[19]  David M. Karl,et al.  Climate-driven changes to the atmospheric CO2 sink in the subtropical North Pacific Ocean , 2003, Nature.

[20]  S. Rintoul,et al.  The response of the Antarctic Circumpolar Current to recent climate change , 2008 .

[21]  Tsutomu Ikeda,et al.  Biogeochemical fluxes through mesozooplankton , 2006 .

[22]  Thomas M. Smith,et al.  An Improved In Situ and Satellite SST Analysis for Climate , 2002 .

[23]  M. Kanamitsu,et al.  NCEP–DOE AMIP-II Reanalysis (R-2) , 2002 .

[24]  A. Kozyr,et al.  Global Ocean Surface Water Partial Pressure of CO2 Database: Measurements Performed During 1968-2007 (Version 2007) , 2008 .

[25]  Kevin E. Trenberth,et al.  A global monthly sea surface temperature climatology , 1992 .

[26]  G. Reverdin,et al.  Interannual and decadal variability of the oceanic carbon sink in the North Atlantic subpolar gyre , 2007 .

[27]  S. Doney,et al.  Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink , 2008 .

[28]  N. Metzl Decadal increase of oceanic carbon dioxide in Southern Indian Ocean surface waters (1991–2007) , 2009 .

[29]  Ian G. Enting,et al.  Future emissions and concentrations of carbon dioxide: Key ocean / atmosphere / land analyses , 1994 .

[30]  Nicolas Gruber,et al.  The Oceanic Sink for Anthropogenic CO2 , 2004, Science.

[31]  R. Feely,et al.  Decadal variability of the air‐sea CO2 fluxes in the equatorial Pacific Ocean , 2006 .

[32]  Corinne Le Quéré,et al.  Trends in the sources and sinks of carbon dioxide , 2009 .

[33]  E. Maier‐Reimer,et al.  Sea‐to‐air CO2 flux from 1948 to 2003: A model study , 2005 .

[34]  A. Watson,et al.  A decrease in the sink for atmospheric CO2 in the North Atlantic , 2004 .

[35]  N. Bates Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades , 2007 .

[36]  A. Watson,et al.  Trends in North Atlantic sea-surface fCO2 from 1990 to 2006 , 2009 .

[37]  I. C. Prentice,et al.  Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs) , 2008 .