Neural Nets and Genetic Algorithms in Marketing

[1]  Qiong Wang,et al.  Kalman Filter Estimation of New Product Diffusion Models , 1997 .

[2]  Harald Hruschka,et al.  Comparing performance of feedforward neural nets and K-means for cluster-based market segmentation , 1999, Eur. J. Oper. Res..

[3]  Sanjoy Ghose,et al.  Comparing the predictive performance of a neural network model with some traditional market response models , 1994 .

[4]  Jeffrey L. Elman,et al.  Distributed Representations, Simple Recurrent Networks, and Grammatical Structure , 1991, Mach. Learn..

[5]  Peter E. Rossi,et al.  Bayesian Statistics and Marketing: Rossi/Bayesian Statistics and Marketing , 2006 .

[6]  Michael Wolfe,et al.  J+ = J , 1994, ACM SIGPLAN Notices.

[7]  Michiel van Wezel,et al.  Modeling brand choice using boosted and stacked neural networks , 2005 .

[8]  R. S. Tedlow New And Improved , 1990 .

[9]  P. Desmet Comparaison de la prédictivité d'un réseau de neurones à rétropropagation avec celles des méthodes de régression linéaire, logistique et AID pour le calcul des scores en marketing direct , 1996 .

[10]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[11]  Nissan Levin,et al.  Applying neural computing to target marketing , 1997 .

[12]  Harald Hruschka,et al.  Produktliniengestaltung mit Genetischen Algorithmen , 2002 .

[13]  Martin Natter,et al.  Segmentation-based competitive analysis with MULTICLUS and topology representing networks , 2000, Comput. Oper. Res..

[14]  Peter Müller,et al.  Issues in Bayesian Analysis of Neural Network Models , 1998, Neural Computation.

[15]  H. Hruschka An artificial neural net attraction model (ANNAM) to analyze market share effects of marketing instruments , 2001 .

[16]  Harald Hruschka,et al.  Analyse von Marktsegmenten mit Hilfe konnexionistischer Modelle , 1992 .

[17]  Rajkumar Venkatesan,et al.  Evolutionary Estimation of Macro-Level Diffusion Models Using Genetic Algorithms: An Alternative to Nonlinear Least Squares , 2004 .

[18]  H. Hruschka,et al.  Using Artificial Neural Nets to Specify and Estimate Aggregate Reference Price Models , 1998 .

[19]  A. Gelfand,et al.  Bayesian Model Choice: Asymptotics and Exact Calculations , 1994 .

[20]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[21]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[22]  Bart Baesens,et al.  Bayesian neural network learning for repeat purchase modelling in direct marketing , 2002, Eur. J. Oper. Res..

[23]  Takeshi Amemiya,et al.  Selection of Regressors , 1980 .

[24]  Josef A. Mazanec,et al.  Neural market structure analysis: Novel topology‐sensitive methodology , 2001 .

[25]  Harald Hruschka,et al.  Relevance of functional flexibility for heterogeneous sales response models: A comparison of parametric and semi-nonparametric models , 2006, Eur. J. Oper. Res..

[26]  Michiel C. van Wezel,et al.  Predicting market responses with a neural network , 1995 .

[27]  Gary J. Russell,et al.  A Probabilistic Choice Model for Market Segmentation and Elasticity Structure , 1989 .

[28]  Scott A. Neslin,et al.  Next-product-to-buy models for cross-selling applications , 2002 .

[29]  Yves Bentz,et al.  La modélisation du choix des marques par le modèle Multinominal Logit et les réseaux de neurones artificiels: proposition d'une approche hybride , 1996 .

[30]  D. Lindley,et al.  Bayes Estimates for the Linear Model , 1972 .

[31]  Harald Hruschka,et al.  A flexible brand choice model based on neural net methodology A comparison to the linear utility multinomial logit model and its latent class extension , 2002, OR Spectr..

[32]  Michael Y. Hu,et al.  Explaining consumer choice through neural networks: The stacked generalization approach , 2003, Eur. J. Oper. Res..

[33]  Herbert K. H. Lee,et al.  A Noninformative Prior for Neural Networks , 2004, Machine Learning.

[34]  D. Midgley,et al.  Breeding competitive strategies , 1997 .

[35]  Lee G. Cooper,et al.  Market-Share Analysis , 1988 .

[36]  Wilfrid S. Kendall,et al.  Networks and Chaos - Statistical and Probabilistic Aspects , 1993 .

[37]  C. W. Lim,et al.  Predicting the effects of physician-directed promotion on prescription yield and sales uptake using neural networks , 2005 .

[38]  Suresh K. Nair,et al.  A model and solution method for multi-period sales promotion design , 2003, Eur. J. Oper. Res..

[39]  Thomas S. Gruca,et al.  Mining sales data using a neural network model of market response , 1999, SKDD.

[40]  Thomas S. Gruca,et al.  Optimal new product positioning: A genetic algorithm approach , 2003, Eur. J. Oper. Res..

[41]  Harald Hruschka,et al.  An empirical comparison of the validity of a neural net based multinomial logit choice model to alternative model specifications , 2004, Eur. J. Oper. Res..

[42]  Wayne S. DeSarbo,et al.  A simulated annealing methodology for clusterwise linear regression , 1989 .

[43]  Kelly E. Fish,et al.  Using an artificial neural network trained with a genetic algorithm to model brand share , 2004 .

[44]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[45]  Nigel Kenneth Pope,et al.  Business Applications and Computational Intelligence , 2006 .

[46]  Kazumi Saito,et al.  Partial BFGS Update and Efficient Step-Length Calculation for Three-Layer Neural Networks , 1997, Neural Computation.

[47]  Harald Hruschka,et al.  Konnexionistische Kaufakt- und Markenwahlmodelle , 1998 .

[48]  Filippo Menczer,et al.  Customer Targeting: A Neural Network Approach Guided by Genetic Algorithms , 2005, Manag. Sci..

[49]  Varghese S. Jacob,et al.  An investigation of mating and population maintenance strategies in hybrid genetic heuristics for product line designs , 2006, Comput. Oper. Res..

[50]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[51]  Suresh K. Nair,et al.  Near optimal solutions for product line design and selection: beam search heuristics , 1995 .

[52]  Philip Hans Franses,et al.  Econometric Models in Marketing , 2002 .

[53]  Martin Fodslette Møller,et al.  A scaled conjugate gradient algorithm for fast supervised learning , 1993, Neural Networks.

[54]  Makoto Abe,et al.  A Generalized Additive Model for Discrete-Choice Data , 1999 .

[55]  Arvind Rangaswamy Chapter 16 Marketing decision models: From linear programs to knowledge-based systems , 1993, Marketing.

[56]  D. M. Titterington,et al.  Neural Networks: A Review from a Statistical Perspective , 1994 .

[57]  Harald Hruschka,et al.  A Probabilistic One-Step Approach to the Optimal Product Line Design Problem Using Conjoint and Cost Data , 2002 .

[58]  Derek W. Bunn,et al.  Development of a multifunctional sales response model with the diagnostic aid of artificial neural networks , 2005 .

[59]  D. E. Goldberg,et al.  Genetic Algorithm in Search , 1989 .

[60]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[61]  Thomas Reutterer,et al.  An improved collaborative filtering approach for predicting cross-category purchases based on binary market basket data , 2003 .

[62]  Brian D. Ripley,et al.  Statistical aspects of neural networks , 1993 .

[63]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[64]  Rajkumar Venkatesan,et al.  A Customer Lifetime Value Framework for Customer Selection and Resource Allocation Strategy , 2004 .

[65]  Prasad A. Naik,et al.  Planning Media Schedules in the Presence of Dynamic Advertising Quality , 1998 .

[66]  D. Agrawal,et al.  Market share forecasting: An empirical comparison of artificial neural networks and multinomial logit model , 1996 .

[67]  Yinfeng Xu,et al.  An empirical study of dynamic customer relationship management , 2005 .

[68]  H. Hruschka,et al.  Evaluation of Aggressive Competitive Pricing Strategies , 1998 .

[69]  Harry Wechsler,et al.  From Statistics to Neural Networks , 1994, NATO ASI Series.

[70]  Patrick L. Brockett,et al.  A Comparative Analysis of Neural Networks and Statistical Methods for Predicting Consumer Choice , 1997 .

[71]  Jerrold H. May,et al.  A Simulation Comparison of Methods for New Product Location , 1983 .

[72]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[73]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[74]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[75]  Harald Hruschka,et al.  Determining market response functions by neural network modeling: A comparison to econometric techniques , 1993 .

[76]  Salvatore Ingrassia,et al.  Neural Network Modeling for Small Datasets , 2005, Technometrics.

[77]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[78]  R. J. Tibshirani,et al.  Nonparametric Regression and Classification Part I—Nonparametric Regression , 1994 .

[79]  Tapabrata Maiti,et al.  Hierarchical Bayesian Neural Networks , 2004 .

[80]  Dirk Van den Poel,et al.  Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting , 2005, Eur. J. Oper. Res..

[81]  Akhil Kumar,et al.  An empirical comparison of neural network and logistic regression models , 1995 .

[82]  Paul E. Green,et al.  Models and Heuristics for Product Line Selection , 1985 .

[83]  Varghese S. Jacob,et al.  Genetic Algorithms for Product Design , 1996 .

[84]  Bradley P. Carlin,et al.  BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..

[85]  Philip Hans Franses,et al.  Modeling consideration sets and brand choice using artificial neural networks ∗ , 2001 .

[86]  Robert L. Smith,et al.  Simulated annealing for constrained global optimization , 1994, J. Glob. Optim..

[87]  Rajkumar Venkatesan,et al.  A genetic algorithms approach to growth phase forecasting of wireless subscribers , 2002 .

[88]  Frederick Kaefer,et al.  Determining the appropriate amount of data for classifying consumers for direct marketing purposes , 2003 .

[89]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[90]  Ramesh Krishnamurti,et al.  A Heuristic Approach to Product Design , 1987 .

[91]  Luiz Moutinho,et al.  Genetic algorithms for tourism marketing , 1998 .

[92]  B. R. Klemz Using genetic algorithms to assess the impact of pricing activity timing , 1999 .

[93]  Peter E. Rossi,et al.  Bayesian Statistics and Marketing , 2005 .

[94]  Lee G. Cooper,et al.  Assessing potential threats to incumbent brands: New product positioning under price competition in a multisegmented market , 2005 .

[95]  R. S. Jeffrey ‘New and improved’ direct marketing: A non-parametric approach , 2002 .

[96]  Sungzoon Cho,et al.  Response models based on bagging neural networks , 2005 .

[97]  K. B. Nichols,et al.  Product line selection and pricing analysis: Impact of genetic relaxations , 2005, Math. Comput. Model..

[98]  Jouko Lampinen,et al.  Bayesian approach for neural networks--review and case studies , 2001, Neural Networks.

[99]  Frederick Kaefer,et al.  A neural network application to consumer classification to improve the timing of direct marketing activities , 2005, Comput. Oper. Res..

[100]  Dwight Merunka,et al.  Neural networks and the multinomial logit for brand choice modelling: a hybrid approach , 2000 .

[101]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[102]  D. G. Morrison,et al.  A Decision Support System for Planning Manufacturers' Sales Promotion Calendars , 1999 .

[103]  Bart J. Bronnenberg,et al.  Limited Choice Sets, Local Price Response, and Implied Measures of Price Competition , 1996 .

[104]  Christophe Deissenberg,et al.  Bio-Mimetic Approaches in Management Science , 1998 .

[105]  Michael Y. Hu,et al.  Estimation of posterior probabilities of consumer situational choices with neural network classifiers , 1999 .

[106]  R. Gupta,et al.  Development of hybrid genetic algorithms for product line designs , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[107]  Michael J. Brusco,et al.  A Simulated Annealing Heuristic for a Bicriterion Partitioning Problem in Market Segmentation , 2002 .

[108]  Konstantinos Paparrizos,et al.  A genetic algorithm approach to the product line design problem using the seller's return criterion: An extensive comparative computational study , 2001, Eur. J. Oper. Res..

[109]  H. Akaike A new look at the statistical model identification , 1974 .

[110]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[111]  Dirk Van den Poel,et al.  Joint optimization of customer segmentation and marketing policy to maximize long-term profitability , 2002, Expert Syst. Appl..

[112]  Gregory Dobson,et al.  Positioning and Pricing a Product Line , 1988 .

[113]  Andrew R. Barron,et al.  Universal approximation bounds for superpositions of a sigmoidal function , 1993, IEEE Trans. Inf. Theory.