On the pricing of multi-asset options under jump-diffusion processes using meshfree moving least-squares approximation
暂无分享,去创建一个
[1] Jerzy Kyparisis,et al. Sensitivity analysis framework for variational inequalities , 1987, Math. Program..
[2] Mehdi Dehghan,et al. A moving least square reproducing polynomial meshless method , 2013 .
[3] Younhee Lee,et al. A Second-order Finite Difference Method for Option Pricing Under Jump-diffusion Models , 2011, SIAM J. Numer. Anal..
[4] Mehdi Dehghan,et al. A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions , 2008, Math. Comput. Simul..
[5] Abdul-Qayyum M. Khaliq,et al. Stabilized explicit Runge-Kutta methods for multi-asset American options , 2014, Comput. Math. Appl..
[6] David Levin,et al. The approximation power of moving least-squares , 1998, Math. Comput..
[7] Jari Toivanen,et al. Numerical Valuation of European and American Options under Kou's Jump-Diffusion Model , 2008, SIAM J. Sci. Comput..
[8] Yumin Cheng,et al. Error estimates for the finite point method , 2008 .
[9] Simon Hubbert,et al. Options pricing under the one-dimensional jump-diffusion model using the radial basis function interpolation scheme , 2014 .
[10] René M. Stulz,et al. Options on the minimum or the maximum of two risky assets : Analysis and applications , 1982 .
[11] P. G. Zhang. Exotic Options: A Guide To Second Generation Options , 1996 .
[12] Haiming Song,et al. An efficient finite element method for pricing American multi-asset put options , 2015, Commun. Nonlinear Sci. Numer. Simul..
[13] P. Boyle,et al. Numerical Evaluation of Multivariate Contingent Claims , 1989 .
[14] H. Zheng,et al. Approximate Basket Options Valuation for a Jump-Diffusion Model , 2009 .
[15] P. Lancaster,et al. Surfaces generated by moving least squares methods , 1981 .
[16] Gregory E. Fasshauer,et al. Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.
[17] D. Shepard. A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.
[18] Elisabeth Larsson,et al. Radial basis function partition of unity methods for pricing vanilla basket options , 2016, Comput. Math. Appl..
[19] E FasshauerG. Approximate moving least-squares approximation for time-dependent PDEs , 2002 .
[20] G. Matheron. The intrinsic random functions and their applications , 1973, Advances in Applied Probability.
[21] Jerzy Kyparisis. Solution differentiability for variational inequalities , 1990, Math. Program..
[22] Peter A. Forsyth,et al. Numerical solution of two asset jump diffusion models for option valuation , 2008 .
[23] Jari Toivanen,et al. Application of operator splitting methods in finance , 2015, 1504.01022.
[24] Jari Toivanen,et al. Operator splitting methods for American option pricing , 2004, Appl. Math. Lett..
[25] Elisabeth Larsson,et al. A Radial Basis Function Partition of Unity Collocation Method for Convection–Diffusion Equations Arising in Financial Applications , 2015, J. Sci. Comput..
[26] Patrick T. Harker,et al. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..
[27] S. Ikonen,et al. Efficient numerical methods for pricing American options under stochastic volatility , 2008 .
[28] Henning Rasmussen,et al. The early exercise region for Bermudan options on two underlyings , 2009, Math. Comput. Model..
[29] Yongsik Kim,et al. Option pricing and Greeks via a moving least square meshfree method , 2014 .
[30] Mehdi Dehghan,et al. On a new family of radial basis functions: Mathematical analysis and applications to option pricing , 2018, J. Comput. Appl. Math..
[31] H. Johnson. Options on the Maximum or the Minimum of Several Assets , 1987, Journal of Financial and Quantitative Analysis.
[32] Stella Dafermos,et al. Sensitivity Analysis in Variational Inequalities , 1988, Math. Oper. Res..
[33] William Margrabe. The Value of an Option to Exchange One Asset for Another , 1978 .
[34] T. Belytschko,et al. Element‐free Galerkin methods , 1994 .
[35] Rama Cont,et al. A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models , 2005, SIAM J. Numer. Anal..
[36] R. C. Merton,et al. Option pricing when underlying stock returns are discontinuous , 1976 .
[37] D. Lamberton,et al. Variational inequalities and the pricing of American options , 1990 .
[38] Nimrod Megiddo,et al. On the existence and uniqueness of solutions in nonlinear complementarity theory , 1977, Math. Program..
[39] Mohan K. Kadalbajoo,et al. An Error Analysis of a Finite Element Method with IMEX-Time Semidiscretizations for Some Partial Integro-differential Inequalities Arising in the Pricing of American Options , 2017, SIAM J. Numer. Anal..
[40] R. Schaback,et al. On generalized moving least squares and diffuse derivatives , 2012 .
[41] Michèle Vanmaele,et al. An RBF-FD method for pricing American options under jump-diffusion models , 2018, Comput. Math. Appl..
[42] Aslak Tveito,et al. Penalty methods for the numerical solution of American multi-asset option problems , 2008 .
[43] Ali Foroush Bastani,et al. A radial basis collocation method for pricing American options under regime-switching jump-diffusion models , 2013 .
[44] Younhee Lee,et al. A Second-Order Tridiagonal Method for American Options under Jump-Diffusion Models , 2011, SIAM J. Sci. Comput..
[45] D. Duffy. Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach , 2006 .
[46] Cu Duong Ha,et al. Application of Degree Theory in Stability of the Complementarity Problem , 1987, Math. Oper. Res..
[47] G. Fasshauer. Approximate Moving Least-Squares Approximation with Compactly Supported Radial Weights , 2003 .
[48] Peter A. Forsyth,et al. A finite volume approach for contingent claims valuation , 2001 .
[49] Luca Vincenzo Ballestra,et al. A fast numerical method to price American options under the Bates model , 2016, Comput. Math. Appl..
[50] Steven Kou,et al. A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..
[51] M. K. Kadalbajoo,et al. Application of the local radial basis function-based finite difference method for pricing American options , 2015, Int. J. Comput. Math..
[52] J. Pang,et al. Existence of optimal solutions to mathematical programs with equilibrium constraints , 1988 .
[53] O. Pironneau,et al. Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .
[54] Luca Vincenzo Ballestra,et al. Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach , 2013 .
[55] M. Ranjbar,et al. A Numerical Method to Approximate Multi-Asset Option Pricing Under Exponential Lévy Model , 2017 .
[56] G. Fasshauer,et al. Using meshfree approximation for multi‐asset American options , 2004 .
[57] Manav Bhatia,et al. Solution Approaches and Sensitivity Analysis of Variational Inequalities , 2019, AIAA Scitech 2019 Forum.
[58] M. K. Kadalbajoo,et al. A radial basis function based implicit-explicit method for option pricing under jump-diffusion models , 2016 .
[59] K. Atkinson,et al. Theoretical Numerical Analysis: A Functional Analysis Framework , 2001 .
[60] Christoph Schwab,et al. On Kolmogorov equations for anisotropic multivariate Lévy processes , 2010, Finance Stochastics.
[61] R. Cont,et al. Financial Modelling with Jump Processes , 2003 .
[62] K. Salkauskas,et al. Moving least-squares are Backus-Gilbert optimal , 1989 .
[63] L. McLinden. An analogue of Moreau's proximation theorem, with application to the nonlinear complementarity problem. , 1980 .
[64] W. Cleveland. Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .
[65] J. Pang. Solution differentiability and continuation of Newton's method for variational inequality problems over polyhedral sets , 1990 .
[66] Mehdi Dehghan,et al. Solution of the Black-Scholes Equation for Pricing of Barrier Option , 2011 .
[67] Niklas Ekvall,et al. A lattice approach for pricing of multivariate contingent claims , 1996 .