On the pricing of multi-asset options under jump-diffusion processes using meshfree moving least-squares approximation

Abstract The moving least-squares (MLS) approximation is a powerful numerical scheme widely used in the meshfree literature to construct local multivariate polynomial basis functions for expanding the solution of a given differential or integral equation. For partial integro-differential equations arising from the valuation of multi-asset options written on correlated Levy-driven assets, we propose here an MLS-based collocation scheme in conjunction with implicit-explicit (IMEX) temporal discretization to numerically solve the problem. We apply the method to price both European and American options and compute the option hedge parameters. In the case of American options, we use an operator splitting approach to solve the linear complementarity formulation of the problem. Our numerical experiments show the efficiency of the proposed scheme in comparison with some competing approaches, specially finite difference methods.

[1]  Jerzy Kyparisis,et al.  Sensitivity analysis framework for variational inequalities , 1987, Math. Program..

[2]  Mehdi Dehghan,et al.  A moving least square reproducing polynomial meshless method , 2013 .

[3]  Younhee Lee,et al.  A Second-order Finite Difference Method for Option Pricing Under Jump-diffusion Models , 2011, SIAM J. Numer. Anal..

[4]  Mehdi Dehghan,et al.  A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions , 2008, Math. Comput. Simul..

[5]  Abdul-Qayyum M. Khaliq,et al.  Stabilized explicit Runge-Kutta methods for multi-asset American options , 2014, Comput. Math. Appl..

[6]  David Levin,et al.  The approximation power of moving least-squares , 1998, Math. Comput..

[7]  Jari Toivanen,et al.  Numerical Valuation of European and American Options under Kou's Jump-Diffusion Model , 2008, SIAM J. Sci. Comput..

[8]  Yumin Cheng,et al.  Error estimates for the finite point method , 2008 .

[9]  Simon Hubbert,et al.  Options pricing under the one-dimensional jump-diffusion model using the radial basis function interpolation scheme , 2014 .

[10]  René M. Stulz,et al.  Options on the minimum or the maximum of two risky assets : Analysis and applications , 1982 .

[11]  P. G. Zhang Exotic Options: A Guide To Second Generation Options , 1996 .

[12]  Haiming Song,et al.  An efficient finite element method for pricing American multi-asset put options , 2015, Commun. Nonlinear Sci. Numer. Simul..

[13]  P. Boyle,et al.  Numerical Evaluation of Multivariate Contingent Claims , 1989 .

[14]  H. Zheng,et al.  Approximate Basket Options Valuation for a Jump-Diffusion Model , 2009 .

[15]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[16]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[17]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[18]  Elisabeth Larsson,et al.  Radial basis function partition of unity methods for pricing vanilla basket options , 2016, Comput. Math. Appl..

[19]  E FasshauerG Approximate moving least-squares approximation for time-dependent PDEs , 2002 .

[20]  G. Matheron The intrinsic random functions and their applications , 1973, Advances in Applied Probability.

[21]  Jerzy Kyparisis Solution differentiability for variational inequalities , 1990, Math. Program..

[22]  Peter A. Forsyth,et al.  Numerical solution of two asset jump diffusion models for option valuation , 2008 .

[23]  Jari Toivanen,et al.  Application of operator splitting methods in finance , 2015, 1504.01022.

[24]  Jari Toivanen,et al.  Operator splitting methods for American option pricing , 2004, Appl. Math. Lett..

[25]  Elisabeth Larsson,et al.  A Radial Basis Function Partition of Unity Collocation Method for Convection–Diffusion Equations Arising in Financial Applications , 2015, J. Sci. Comput..

[26]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[27]  S. Ikonen,et al.  Efficient numerical methods for pricing American options under stochastic volatility , 2008 .

[28]  Henning Rasmussen,et al.  The early exercise region for Bermudan options on two underlyings , 2009, Math. Comput. Model..

[29]  Yongsik Kim,et al.  Option pricing and Greeks via a moving least square meshfree method , 2014 .

[30]  Mehdi Dehghan,et al.  On a new family of radial basis functions: Mathematical analysis and applications to option pricing , 2018, J. Comput. Appl. Math..

[31]  H. Johnson Options on the Maximum or the Minimum of Several Assets , 1987, Journal of Financial and Quantitative Analysis.

[32]  Stella Dafermos,et al.  Sensitivity Analysis in Variational Inequalities , 1988, Math. Oper. Res..

[33]  William Margrabe The Value of an Option to Exchange One Asset for Another , 1978 .

[34]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[35]  Rama Cont,et al.  A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models , 2005, SIAM J. Numer. Anal..

[36]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[37]  D. Lamberton,et al.  Variational inequalities and the pricing of American options , 1990 .

[38]  Nimrod Megiddo,et al.  On the existence and uniqueness of solutions in nonlinear complementarity theory , 1977, Math. Program..

[39]  Mohan K. Kadalbajoo,et al.  An Error Analysis of a Finite Element Method with IMEX-Time Semidiscretizations for Some Partial Integro-differential Inequalities Arising in the Pricing of American Options , 2017, SIAM J. Numer. Anal..

[40]  R. Schaback,et al.  On generalized moving least squares and diffuse derivatives , 2012 .

[41]  Michèle Vanmaele,et al.  An RBF-FD method for pricing American options under jump-diffusion models , 2018, Comput. Math. Appl..

[42]  Aslak Tveito,et al.  Penalty methods for the numerical solution of American multi-asset option problems , 2008 .

[43]  Ali Foroush Bastani,et al.  A radial basis collocation method for pricing American options under regime-switching jump-diffusion models , 2013 .

[44]  Younhee Lee,et al.  A Second-Order Tridiagonal Method for American Options under Jump-Diffusion Models , 2011, SIAM J. Sci. Comput..

[45]  D. Duffy Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach , 2006 .

[46]  Cu Duong Ha,et al.  Application of Degree Theory in Stability of the Complementarity Problem , 1987, Math. Oper. Res..

[47]  G. Fasshauer Approximate Moving Least-Squares Approximation with Compactly Supported Radial Weights , 2003 .

[48]  Peter A. Forsyth,et al.  A finite volume approach for contingent claims valuation , 2001 .

[49]  Luca Vincenzo Ballestra,et al.  A fast numerical method to price American options under the Bates model , 2016, Comput. Math. Appl..

[50]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[51]  M. K. Kadalbajoo,et al.  Application of the local radial basis function-based finite difference method for pricing American options , 2015, Int. J. Comput. Math..

[52]  J. Pang,et al.  Existence of optimal solutions to mathematical programs with equilibrium constraints , 1988 .

[53]  O. Pironneau,et al.  Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .

[54]  Luca Vincenzo Ballestra,et al.  Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach , 2013 .

[55]  M. Ranjbar,et al.  A Numerical Method to Approximate Multi-Asset Option Pricing Under Exponential Lévy Model , 2017 .

[56]  G. Fasshauer,et al.  Using meshfree approximation for multi‐asset American options , 2004 .

[57]  Manav Bhatia,et al.  Solution Approaches and Sensitivity Analysis of Variational Inequalities , 2019, AIAA Scitech 2019 Forum.

[58]  M. K. Kadalbajoo,et al.  A radial basis function based implicit-explicit method for option pricing under jump-diffusion models , 2016 .

[59]  K. Atkinson,et al.  Theoretical Numerical Analysis: A Functional Analysis Framework , 2001 .

[60]  Christoph Schwab,et al.  On Kolmogorov equations for anisotropic multivariate Lévy processes , 2010, Finance Stochastics.

[61]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[62]  K. Salkauskas,et al.  Moving least-squares are Backus-Gilbert optimal , 1989 .

[63]  L. McLinden An analogue of Moreau's proximation theorem, with application to the nonlinear complementarity problem. , 1980 .

[64]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[65]  J. Pang Solution differentiability and continuation of Newton's method for variational inequality problems over polyhedral sets , 1990 .

[66]  Mehdi Dehghan,et al.  Solution of the Black-Scholes Equation for Pricing of Barrier Option , 2011 .

[67]  Niklas Ekvall,et al.  A lattice approach for pricing of multivariate contingent claims , 1996 .