High-dimensional lattice gases

We investigate the critical behaviour of hard-core lattice gases in four, five and six dimensions by means of Monte Carlo simulations. In order to suppress critical slowing down, we use a geometrical cluster Monte Carlo algorithm. In particular, nearest-neighbour-exclusion lattice gases on simple hypercubic lattices are investigated. These models undergo Ising-like ordering transitions where the majority of the lattice-gas particles settle on one of two sublattices. A finite-size-scaling analysis of the simulation data confirms that these lattice gases display classical critical behaviour. The results agree with the renormalization predictions at and above the upper critical dimensionality. In particular, the predicted value of the Binder cumulant is confirmed.

[1]  D. Huse Tricriticality of Interacting Hard Squares: Some Exact Results. , 1982 .

[2]  R. Huggins Solid State Ionics , 1989 .

[3]  L. Chayes,et al.  Graphical Representations for Ising Systems in External Fields , 1998, cond-mat/9806312.

[5]  R. Baxter,et al.  Hard hexagons: exact solution , 1980 .

[6]  Wolff,et al.  Collective Monte Carlo updating for spin systems. , 1989, Physical review letters.

[7]  D. W. Wood,et al.  Vertex models for the hard-square and hard-hexagon gases, and critical parameters from the scaling transformation , 1980 .

[8]  Jean Zinn-Justin,et al.  Finite Size Effects in Phase Transitions , 1985 .

[9]  Henk W. J. Blöte,et al.  The simple-cubic lattice gas with nearest-neighbour exclusion: Ising universality , 1996 .

[10]  Erik Luijten Interaction Range, Universality and the Upper Critical Dimension , 1997 .

[11]  S. K. Tsang,et al.  Hard-square lattice gas , 1980 .

[12]  Jon Machta,et al.  GRAPHICAL REPRESENTATIONS AND CLUSTER ALGORITHMS FOR CRITICAL POINTS WITH FIELDS , 1998 .

[13]  Weight vectors of the basic A1(1)-module and the Littlewood-Richardson rule , 1995, q-alg/9502011.

[14]  UNIVERSALITY IN THE THREE-DIMENSIONAL HARD-SPHERE LATTICE GAS , 1996, cond-mat/9602006.

[15]  H. Blöte,et al.  Finite-size calculations on the three-dimensional Ising model , 1993 .

[16]  Erik Luijten,et al.  Ising universality in three dimensions: a Monte Carlo study , 1995, cond-mat/9509016.

[17]  T. Ziman,et al.  Magnetic Order and Disorder in the Frustrated Quantum Heisenberg Antiferromagnet in Two Dimensions , 1994, cond-mat/9402061.

[18]  Theory of anomalous voltage-discharge behavior for topotactic intercalation , 2000 .

[19]  Werner Krauth,et al.  Cluster algorithm for hard spheres and related systems , 1995 .

[20]  H. Blöte,et al.  The non-interacting hard-square lattice gas: Ising universality , 1993 .

[21]  J. Heringa,et al.  Cluster dynamics and universality of Ising lattice gases , 1998 .

[22]  Henk W. J. Blöte,et al.  Geometric cluster Monte Carlo simulation , 1998 .

[23]  K. Binder Finite size scaling analysis of ising model block distribution functions , 1981 .

[24]  H. Blote,et al.  Accurate determination of the critical line of the square Ising antiferromagnet in a field , 1990 .

[25]  TRANSFER-MATRIX METHOD FOR HARD-SQUARE LATTICE GAS , 1996 .

[26]  J. Berg,et al.  Percolation and the hard-core lattice gas model , 1994 .

[27]  Z. Rácz Phase boundary of Ising antiferromagnets near H=Hc and T=0: Results from hard-core lattice gas calculations , 1980 .

[28]  Critical phenomena of the hard-sphere lattice gas on the simple cubic lattice , 1995, cond-mat/9508014.

[29]  R. Baxter,et al.  Rogers-Ramanujan identities in the hard hexagon model , 1981 .