Time-Work Tradeoffs of the Single-Source Shortest Paths Problem

We give parallel algorithms that solve the single-source shortest paths problem on a weighted, undirected graph withnvertices andmedges inO(tlgn) time andO((n3/t2)lgnlg(n/t)+mlgn) work, or inO(tlgn) time andO((n3/t3+mn/t)lgn) work for anytin the range lgn?t?n. These algorithms run on the EREW PRAM model. They are the first strongly polynomial exact algorithms that run ino(n) time while doingo(n3) work.

[1]  Edith Cohen,et al.  Polylog-time and near-linear work approximation scheme for undirected shortest paths , 1994, STOC '94.

[2]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[3]  Mihalis Yannakakis,et al.  High-probability parallel transitive closure algorithms , 1990, SPAA '90.

[4]  Gary L. Miller,et al.  An Improved Parallel Algorithm that Computes the BFS Numbering of a Directed Graph , 1988, Information Processing Letters.

[5]  Thomas H. Spencer Time-work tradeoffs for parallel graph algorithms , 1991, SODA '91.

[6]  Philip N. Klein,et al.  A parallel randomized approximation scheme for shortest paths , 1992, STOC '92.

[7]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[8]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[9]  Richard Cole,et al.  Parallel merge sort , 1988, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[10]  Richard M. Karp,et al.  A Survey of Parallel Algorithms for Shared-Memory Machines , 1988 .

[11]  Thomas H. Spencer More time-work tradeoffs for parallel graph algorithms , 1991, SPAA '91.

[12]  Edith Cohen Efficient parallel shortest-paths in digraphs with a separator decomposition , 1993, SPAA '93.

[13]  Uzi Vishkin,et al.  Parallel Dictionaries in 2-3 Trees , 1983, ICALP.

[14]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.