Role of virus-encoded microRNAs in herpesvirus biology.

[1]  B. Cullen,et al.  Analysis of Human Alphaherpesvirus MicroRNA Expression in Latently Infected Human Trigeminal Ganglia , 2009, Journal of Virology.

[2]  Noam Stern-Ginossar,et al.  Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. , 2009, Cell host & microbe.

[3]  S. Sengupta,et al.  The microRNAs of Epstein-Barr Virus are expressed at dramatically differing levels among cell lines. , 2009, Virology.

[4]  D. Blackbourn,et al.  Modulation of the immune system by Kaposi's sarcoma-associated herpesvirus. , 2009, Trends in microbiology.

[5]  G. Meister,et al.  Identification of Novel Epstein-Barr Virus MicroRNA Genes from Nasopharyngeal Carcinomas , 2009, Journal of Virology.

[6]  Katherine Cosmopoulos,et al.  Comprehensive Profiling of Epstein-Barr Virus MicroRNAs in Nasopharyngeal Carcinoma , 2008, Journal of Virology.

[7]  P. Krause,et al.  Novel Less-Abundant Viral MicroRNAs Encoded by Herpes Simplex Virus 2 Latency-Associated Transcript and Their Roles in Regulating ICP34.5 and ICP0 mRNAs , 2008, Journal of Virology.

[8]  D. Kwong,et al.  An Epstein-Barr virus–encoded microRNA targets PUMA to promote host cell survival , 2008, The Journal of experimental medicine.

[9]  Xiaowei Wang,et al.  A Functional MicroRNA-155 Ortholog Encoded by the Oncogenic Marek's Disease Virus , 2008, Journal of Virology.

[10]  A. Rossi,et al.  Epstein–Barr virus latent membrane protein 1 trans-activates miR-155 transcription through the NF-κB pathway , 2008, Nucleic acids research.

[11]  J. Burnside,et al.  Sequence Conservation and Differential Expression of Marek's Disease Virus MicroRNAs , 2008, Journal of Virology.

[12]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[13]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[14]  J. Cohen,et al.  An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor , 2008, Proceedings of the National Academy of Sciences.

[15]  Ryan M. O’Connell,et al.  MicroRNAs: new regulators of immune cell development and function , 2008, Nature Immunology.

[16]  N. Raab-Traub,et al.  Epstein-Barr Virus BART MicroRNAs Are Produced from a Large Intron prior to Splicing , 2008, Journal of Virology.

[17]  B. Cullen,et al.  MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs , 2008, Nature.

[18]  C. Croce,et al.  MicroRNAs in normal and malignant hematopoiesis , 2008, Current opinion in hematology.

[19]  Pamela J Green,et al.  Deep Sequencing of Chicken microRNAs , 2008, BMC Genomics.

[20]  Jirí Vanícek,et al.  Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: Implications for latency , 2008, Proceedings of the National Academy of Sciences.

[21]  M. Lacey,et al.  MicroRNA-155 Is an Epstein-Barr Virus-Induced Gene That Modulates Epstein-Barr Virus-Regulated Gene Expression Pathways , 2008, Journal of Virology.

[22]  Andrea J. O'Hara,et al.  EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3. , 2008, Cancer research.

[23]  M. Watson,et al.  MicroRNA Profile of Marek's Disease Virus-Transformed T-Cell Line MSB-1: Predominance of Virus-Encoded MicroRNAs , 2008, Journal of Virology.

[24]  W. Filipowicz,et al.  Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? , 2008, Nature Reviews Genetics.

[25]  J. Steitz,et al.  Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation , 2007, Science.

[26]  Bryan R. Cullen,et al.  A viral microRNA functions as an orthologue of cellular miR-155 , 2007, Nature.

[27]  K. Roemer,et al.  Epstein–Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5 , 2007, Nucleic acids research.

[28]  D. Spector,et al.  A Human Cytomegalovirus-Encoded microRNA Regulates Expression of Multiple Viral Genes Involved in Replication , 2007, PLoS pathogens.

[29]  S. Pfeffer,et al.  Mouse Cytomegalovirus MicroRNAs Dominate the Cellular Small RNA Profile during Lytic Infection and Show Features of Posttranscriptional Regulation , 2007, Journal of Virology.

[30]  Kwok Wai Lo,et al.  Modulation of LMP1 protein expression by EBV-encoded microRNAs , 2007, Proceedings of the National Academy of Sciences.

[31]  Alberto Riva,et al.  Kaposi's Sarcoma-Associated Herpesvirus Encodes an Ortholog of miR-155 , 2007, Journal of Virology.

[32]  Hanah Margalit,et al.  Host Immune System Gene Targeting by a Viral miRNA , 2007, Science.

[33]  B. Cullen,et al.  Cloning and analysis of microRNAs encoded by the primate gamma-herpesvirus rhesus monkey rhadinovirus. , 2007, Virology.

[34]  L. Xing,et al.  Epstein-Barr Virus BHRF1 Micro- and Stable RNAs during Latency III and after Induction of Replication , 2007, Journal of Virology.

[35]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[36]  Alberto Riva,et al.  Identification of Cellular Genes Targeted by KSHV-Encoded MicroRNAs , 2007, PLoS pathogens.

[37]  M. Zavolan,et al.  Marek's Disease Virus Type 2 (MDV-2)-Encoded MicroRNAs Show No Sequence Conservation with Those Encoded by MDV-1 , 2007, Journal of Virology.

[38]  M. Samols,et al.  Conservation of virally encoded microRNAs in Kaposi sarcoma--associated herpesvirus in primary effusion lymphoma cell lines and in patients with Kaposi sarcoma or multicentric Castleman disease. , 2007, The Journal of infectious diseases.

[39]  J. Burnside,et al.  Marek's Disease Virus Encodes MicroRNAs That Map to meq and the Latency-Associated Transcript , 2006, Journal of Virology.

[40]  J. Sinclair,et al.  Latency and reactivation of human cytomegalovirus. , 2006, The Journal of general virology.

[41]  Guanglin Li,et al.  Prediction and Identification of Herpes Simplex Virus 1-Encoded MicroRNAs , 2006, Journal of Virology.

[42]  Adam Grundhoff,et al.  A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. , 2006, RNA.

[43]  B. Cullen,et al.  Transcriptional Origin of Kaposi's Sarcoma-Associated Herpesvirus MicroRNAs , 2006, Journal of Virology.

[44]  Alexandra Schäfer,et al.  Epstein–Barr Virus MicroRNAs Are Evolutionarily Conserved and Differentially Expressed , 2006, PLoS pathogens.

[45]  N. Rajewsky,et al.  Cell-type-specific signatures of microRNAs on target mRNA expression. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[46]  K. Igarashi,et al.  The heme-Bach1 pathway in the regulation of oxidative stress response and erythroid differentiation. , 2006, Antioxidants & redox signaling.

[47]  Satoko Matsumura,et al.  Transcripts Encoding K12, v-FLIP, v-Cyclin, and the MicroRNA Cluster of Kaposi's Sarcoma-Associated Herpesvirus Originate from a Common Promoter , 2005, Journal of Virology.

[48]  Edward Yang,et al.  Human cytomegalovirus expresses novel microRNAs during productive viral infection , 2005, Cellular microbiology.

[49]  M. Samols,et al.  Cloning and Identification of a MicroRNA Cluster within the Latency-Associated Region of Kaposi's Sarcoma-Associated Herpesvirus , 2005, Journal of Virology.

[50]  Blossom Damania,et al.  Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  C. Sander,et al.  Identification of microRNAs of the herpesvirus family , 2005, Nature Methods.

[52]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[53]  A. Moses,et al.  Kaposi sarcoma-associated herpesvirus (KSHV) induces heme oxygenase-1 expression and activity in KSHV-infected endothelial cells. , 2004, Blood.

[54]  Anton J. Enright,et al.  Identification of Virus-Encoded MicroRNAs , 2004, Science.

[55]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[56]  D. Bloom HSV LAT AND NEURONAL SURVIVAL , 2004, International reviews of immunology.

[57]  C. Sutherland,et al.  Human Cytomegalovirus Glycoprotein UL16 Causes Intracellular Sequestration of NKG2D Ligands, Protecting Against Natural Killer Cell Cytotoxicity , 2003, The Journal of experimental medicine.

[58]  Jiawei Han,et al.  Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[59]  K. Vousden,et al.  PUMA, a novel proapoptotic gene, is induced by p53. , 2001, Molecular cell.

[60]  R. Armitage,et al.  ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. , 2001, Immunity.

[61]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[62]  F. Slack,et al.  The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. , 2000, Molecular cell.

[63]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[64]  E. White,et al.  Btf, a Novel Death-Promoting Transcriptional Repressor That Interacts with Bcl-2-Related Proteins , 1999, Molecular and Cellular Biology.

[65]  E. Kieff,et al.  The Epstein–Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-κB , 1997 .

[66]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[67]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[68]  Carlos Lopez,et al.  Human Herpesviruses: List of contributors , 2007 .

[69]  M. Adams,et al.  Unconventional processing of the 3' termini of the Epstein-Barr virus DNA polymerase mRNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[70]  D. Ganem,et al.  Tandem array–based expression screens identify host mRNA targets of virus-encoded microRNAs , 2009, Nature Genetics.

[71]  S. Pfeffer Identification of virally encoded microRNAs. , 2007, Methods in enzymology.

[72]  Sam Griffiths-Jones,et al.  The microRNA Registry , 2004, Nucleic Acids Res..

[73]  G. Ruvkun,et al.  Dominant gain-of-function mutations that lead to misregulation of the C. elegans heterochronic gene lin-14, and the evolutionary implications of dominant mutations in pattern-formation genes. , 1991, Development (Cambridge, England). Supplement.

[74]  Edinburgh Research Explorer Identification and characterization of human cytomegalovirus-encoded microRNAs , 2022 .