A new non-linear two-time-level Central Leapfrog scheme in staggered conservation-flux variables for fluctuating hydrodynamics equations with GPU implementation

Abstract For solving Landau–Lifshitz Navier–Stokes fluctuating hydrodynamics equations, a two-time-level modification of the classical Central Leapfrog scheme with non-linear flux correction is developed. The new algorithm is simple for implementation and demonstrates high accuracy in satisfying the fluctuation–dissipation theorem. The numerical results for equilibrium and non-equilibrium problems in one-dimensional and three-dimensional settings are compared with theoretical predictions, the results from direct molecular dynamics simulations and also with those of several popular computational schemes in the literature. Because of simplicity and locality of the computational stencil, the new algorithm can be efficiently implemented on the GPU, which accelerates the calculation in comparison with a single-CPU-core computation by a factor of 300.

[1]  G. A. Faranosov,et al.  CABARET Method on Unstructured Hexahedral Grids for Jet Noise Computation , 2013 .

[2]  Tom Hynes,et al.  A method for solving compressible flow equations in an unsteady free stream , 2006 .

[3]  Homa Karimabadi,et al.  Self-adaptive time integration of flux-conservative equations with sources , 2006, J. Comput. Phys..

[4]  V. M. Goloviznin,et al.  Compact Accurately Boundary-Adjusting high-REsolution Technique for fluid dynamics , 2009, J. Comput. Phys..

[5]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[6]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[7]  S. Luding,et al.  A comparison of the value of viscosity for several water models using Poiseuille flow in a nano-channel. , 2012, The Journal of chemical physics.

[8]  John B. Bell,et al.  Computational fluctuating fluid dynamics , 2010 .

[9]  Axel Klar,et al.  Meshfree method for fluctuating hydrodynamics , 2012, Math. Comput. Simul..

[10]  Pep Español,et al.  INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 35 (2002) 1605–1625 PII: S0305-4470(02)28700-4 , 2022 .

[11]  P. Coveney,et al.  Hybrid method coupling fluctuating hydrodynamics and molecular dynamics for the simulation of macromolecules. , 2007, The Journal of chemical physics.

[12]  A. Ladd,et al.  Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries. , 2005, The Journal of chemical physics.

[13]  S. Karabasov,et al.  A novel computational method for modelling stochastic advection in heterogeneous media , 2007 .

[14]  Pablo A. Ferrari,et al.  Shock fluctuations in the asymmetric simple exclusion process , 1994 .

[15]  Aleksandar Donev,et al.  On the Accuracy of Finite-Volume Schemes for Fluctuating Hydrodynamics , 2009, 0906.2425.

[16]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[17]  Dmitry Nerukh,et al.  Concurrent multiscale modelling of atomistic and hydrodynamic processes in liquids , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.

[19]  S. A. Karabasov,et al.  Time asynchronous relative dimension in space method for multi-scale problems in fluid dynamics , 2014, J. Comput. Phys..

[20]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[21]  J. Chu,et al.  Fluctuating hydrodynamics for multiscale modeling and simulation: energy and heat transfer in molecular fluids. , 2012, The Journal of chemical physics.

[22]  Joel Keizer,et al.  Statistical Thermodynamics of Nonequilibrium Processes , 1987 .

[23]  Jhih-Wei Chu,et al.  Bridging fluctuating hydrodynamics and molecular dynamics simulations of fluids. , 2009, The Journal of chemical physics.

[24]  Thermodynamically Admissible Form for Discrete Hydrodynamics , 1999, cond-mat/9901101.

[25]  Ladd Short-time motion of colloidal particles: Numerical simulation via a fluctuating lattice-Boltzmann equation. , 1993, Physical review letters.

[26]  John B Bell,et al.  Numerical methods for the stochastic Landau-Lifshitz Navier-Stokes equations. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[28]  P. Español,et al.  Dissipative particle dynamics with energy conservation , 1997 .

[29]  Jan V. Sengers,et al.  Hydrodynamic Fluctuations in Fluids and Fluid Mixtures , 2006 .

[30]  Charles Hirsch,et al.  Numerical computation of internal & external flows: fundamentals of numerical discretization , 1988 .

[31]  P. Ahlrichs,et al.  Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics , 1999, cond-mat/9905183.

[32]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[33]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation , 1993, Journal of Fluid Mechanics.

[34]  John B. Bell,et al.  Staggered Schemes for Fluctuating Hydrodynamics , 2012, Multiscale Model. Simul..

[35]  Sergio Pirozzoli,et al.  On the spectral properties of shock-capturing schemes , 2006, J. Comput. Phys..

[36]  L. Landau,et al.  statistical-physics-part-1 , 1958 .

[37]  David L. Book,et al.  Flux-corrected transport II: Generalizations of the method , 1975 .

[38]  Erik Dick,et al.  On the spectral and conservation properties of nonlinear discretization operators , 2011, J. Comput. Phys..

[39]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[40]  P. Coveney,et al.  Fluctuating hydrodynamic modeling of fluids at the nanoscale. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  G De Fabritiis,et al.  Multiscale modeling of liquids with molecular specificity. , 2006, Physical review letters.

[42]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[43]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics , 1950 .

[44]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[45]  O. B. Usta,et al.  Flow injection of polymers into nanopores , 2009 .

[46]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[47]  Hoheisel,et al.  Exact molecular dynamics and kinetic theory results for thermal transport coefficients of the Lennard-Jones argon fluid in a wide region of states. , 1990, Physical review. A, Atomic, molecular, and optical physics.