Fast Monte-Carlo algorithms for approximate matrix multiplication
暂无分享,去创建一个
[1] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[2] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[3] V. Strassen. Gaussian elimination is not optimal , 1969 .
[4] János Komlós,et al. The eigenvalues of random symmetric matrices , 1981, Comb..
[5] Gene H. Golub,et al. Matrix computations , 1983 .
[6] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[7] Susan T. Dumais,et al. Using Linear Algebra for Intelligent Information Retrieval , 1995, SIAM Rev..
[8] Edith Cohen,et al. Approximating matrix multiplication for pattern recognition tasks , 1997, SODA '97.
[9] Alan M. Frieze,et al. Fast Monte-Carlo algorithms for finding low-rank approximations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[10] S. Vempala,et al. E cient Singular Value Decompositionvia Improved Document SamplingFan , 1999 .
[11] Alan M. Frieze,et al. Clustering in large graphs and matrices , 1999, SODA '99.
[12] Michael Krivelevich,et al. Approximating the Independence Number and the Chromatic Number in Expected Polynominal Time , 2000, ICALP.
[13] N. Alon,et al. On the concentration of eigenvalues of random symmetric matrices , 2000, math-ph/0009032.
[14] Dimitris Achlioptas,et al. Fast computation of low rank matrix approximations , 2001, STOC '01.
[15] V. Vu,et al. Approximating the Independence Number and the Chromatic Number in Expected Polynomial Time , 2000, J. Comb. Optim..