Exact convergence times for generation of random bipartite entanglement

We calculate exact convergence times to reach random bipartite entanglement for various random protocols. The eigenproblem of a Markovian chain governing the process is mapped to a spin chain, thereby obtaining exact expression for the gap of the Markov chain for any number of qubits. For protocols coupling nearest-neighbor qubits and a controlled-NOT (CNOT) gate the mapping goes to the $XYZ$ model while for a U(4) gate it goes to an integrable $XY$ model. For coupling between a random pair of qubits the mapping is to an integrable Lipkin-Meshkov-Glick model. In all cases the gap scales inversely with the number of qubits, thereby improving on a recent bound [Phys. Rev. Lett. 98, 130502 (2007)].

[1]  E. Lubkin Entropy of an n‐system from its correlation with a k‐reservoir , 1978 .

[2]  Gerhard Müller,et al.  Antiferromagnetic long-range order in the anisotropic quantum spin chain , 1982 .

[3]  M B Plenio,et al.  Generic entanglement can be generated efficiently. , 2007, Physical review letters.

[4]  Lorenza Viola,et al.  Quantum pseudorandomness from cluster-state quantum computation , 2008, 0802.2675.

[5]  M. B. Plenio,et al.  The emergence of typical entanglement in two-party random processes , 2007 .

[6]  A. Winter,et al.  Aspects of Generic Entanglement , 2004, quant-ph/0407049.

[7]  Giuliano Benenti,et al.  Detecting entanglement of random states with an entanglement witness , 2007, 0706.2765.

[8]  Yishai Shimoni,et al.  Formation of multipartite entanglement using random quantum gates , 2007, 0708.3481.

[9]  A. Harrow,et al.  Quantum dynamics as a physical resource , 2002, quant-ph/0208077.

[10]  A. Messiah Quantum Mechanics , 1961 .

[11]  Seth Lloyd,et al.  Pseudo-Random Unitary Operators for Quantum Information Processing , 2003, Science.

[12]  Marko Znidaric Optimal two-qubit gate for generation of random bipartite entanglement , 2007 .

[13]  A. Winter,et al.  Randomizing Quantum States: Constructions and Applications , 2003, quant-ph/0307104.

[14]  Seth Lloyd,et al.  Convergence conditions for random quantum circuits , 2005, quant-ph/0503210.

[15]  H. Sommers,et al.  Induced measures in the space of mixed quantum states , 2000, quant-ph/0012101.

[16]  Andreas J. Winter,et al.  Optimal Superdense Coding of Entangled States , 2006, IEEE Transactions on Information Theory.

[17]  H. Lipkin,et al.  Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory , 1965 .

[18]  Yaakov S Weinstein,et al.  Entanglement generation of nearly random operators. , 2005, Physical review letters.

[19]  A. Harrow,et al.  Superdense coding of quantum states. , 2003, Physical review letters.

[20]  Page,et al.  Average entropy of a subsystem. , 1993, Physical review letters.

[21]  J. Draayer,et al.  Analytical solutions for the LMG model , 1999 .

[22]  Debbie W. Leung,et al.  Remote preparation of quantum states , 2005, IEEE Transactions on Information Theory.

[23]  S. Katsura,et al.  Statistical Mechanics of the Anisotropic Linear Heisenberg Model , 1962 .