A Single-Inductor Triple-Source Quad-Mode Energy-Harvesting Interface With Automatic Source Selection and Reversely Polarized Energy Recycling

This paper presents a single-inductor triple-source quad-mode (SITSQM) energy-harvesting interface in a 0.18-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> CMOS process. The proposed reversely polarized energy recycling (RPER) technique improves not only the conversion efficiency at low input voltage but also the system’s output power range. The interface employs the buck–boost topology to convert energy from photovoltaic (PV) cells and a thermoelectric generator (TEG) to a regulated 1.2-V output. The proposed converter features four different operating modes, namely, harvesting, recycling, storing, and backup. The operating mode is automatically selected according to the input and load conditions using the automatic source selection mechanism. The experimental results demonstrate 25.3% efficiency improvement and 10<inline-formula> <tex-math notation="LaTeX">$\times $ </tex-math></inline-formula> output power range extension from the proposed RPER technique. The proposed SITSQM converter automatically manages three harvesting sources with 82.1% peak conversion efficiency.

[1]  Anantha P. Chandrakasan,et al.  A 1.1 nW Energy-Harvesting System with 544 pW Quiescent Power for Next-Generation Implants , 2014, IEEE Journal of Solid-State Circuits.

[2]  Tai-Haur Kuo,et al.  A Single-Inductor Dual-Path Three-Switch Converter With Energy-Recycling Technique for Light Energy Harvesting , 2016, IEEE Journal of Solid-State Circuits.

[3]  Anantha Chandrakasan,et al.  Platform architecture for solar, thermal and vibration energy combining with MPPT and single inductor , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[4]  Po-Hung Chen,et al.  A 50 nW-to-10 mW Output Power Tri-Mode Digital Buck Converter With Self-Tracking Zero Current Detection for Photovoltaic Energy Harvesting , 2016, IEEE Journal of Solid-State Circuits.

[5]  Liang-Hung Lu,et al.  50 mV-Input Batteryless Boost Converter for Thermal Energy Harvesting , 2013, IEEE Journal of Solid-State Circuits.

[6]  G. Cho,et al.  A 40 mV Transformer-Reuse Self-Startup Boost Converter With MPPT Control for Thermoelectric Energy Harvesting , 2012, IEEE Journal of Solid-State Circuits.

[7]  Kazunori Watanabe,et al.  A 0.6 V Input CCM/DCM Operating Digital Buck Converter in 40 nm CMOS , 2014, IEEE Journal of Solid-State Circuits.

[8]  Dejan Markovic,et al.  A Miniaturized 0.78-mW/cm2 Autonomous Thermoelectric Energy-Harvesting Platform for Biomedical Sensors , 2017, IEEE Transactions on Biomedical Circuits and Systems.

[9]  Po-Hung Chen,et al.  Dual-Source Energy-Harvesting Interface With Cycle-by-Cycle Source Tracking and Adaptive Peak-Inductor-Current Control , 2018, IEEE Journal of Solid-State Circuits.

[10]  Bin Shao,et al.  21.3 A 200nA single-inductor dual-input-triple-output (DITO) converter with two-stage charging and process-limit cold-start voltage for photovoltaic and thermoelectric energy harvesting , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[11]  Shouri Chatterjee,et al.  An 18 nA, 87% Efficient Solar, Vibration and RF Energy-Harvesting Power Management System With a Single Shared Inductor , 2016, IEEE Journal of Solid-State Circuits.

[12]  Philip K. T. Mok,et al.  Design of Transformer-Based Boost Converter for High Internal Resistance Energy Harvesting Sources With 21 mV Self-Startup Voltage and 74% Power Efficiency , 2014, IEEE Journal of Solid-State Circuits.

[13]  Anantha Chandrakasan,et al.  A Battery-Less Thermoelectric Energy Harvesting Interface Circuit With 35 mV Startup Voltage , 2010, IEEE Journal of Solid-State Circuits.

[14]  Sungkyu Cho,et al.  A coreless maximum power point tracking circuit of thermoelectric generators for battery charging systems , 2010, 2010 IEEE Asian Solid-State Circuits Conference.

[15]  Kai Strunz,et al.  A 20 mV Input Boost Converter With Efficient Digital Control for Thermoelectric Energy Harvesting , 2010, IEEE Journal of Solid-State Circuits.

[16]  Po-Hung Chen,et al.  An 82.1%-Power-Efficiency Single-Inductor Triple-Source Quad-Mode Energy Harvesting Interface with Automatic Source Selection and Reversely Polarized Energy Recycling , 2018, 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC).

[17]  Howard Tang,et al.  A 400 nW Single-Inductor Dual-Input–Tri-Output DC–DC Buck–Boost Converter With Maximum Power Point Tracking for Indoor Photovoltaic Energy Harvesting , 2015, IEEE Journal of Solid-State Circuits.

[18]  Anantha Chandrakasan,et al.  23.2 A 1.1nW energy harvesting system with 544pW quiescent power for next-generation implants , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[19]  Philex Ming-Yan Fan,et al.  Thermoelectric Energy Harvesting Interface Circuit With Capacitive Bootstrapping Technique for Energy-Efficient IoT Devices , 2018, IEEE Internet of Things Journal.

[20]  Ana Rusu,et al.  A Dual-Output Thermoelectric Energy Harvesting Interface With 86.6% Peak Efficiency at 30 $\mu {\text {W}}$ and Total Control Power of 160 nW , 2016, IEEE Journal of Solid-State Circuits.

[21]  David D. Wentzloff,et al.  A 10 mV-Input Boost Converter With Inductor Peak Current Control and Zero Detection for Thermoelectric and Solar Energy Harvesting With 220 mV Cold-Start and $-$14.5 dBm, 915 MHz RF Kick-Start , 2015, IEEE Journal of Solid-State Circuits.

[22]  Anantha Chandrakasan,et al.  A 10 nW–1 µW Power Management IC With Integrated Battery Management and Self-Startup for Energy Harvesting Applications , 2016, IEEE Journal of Solid-State Circuits.