Topological Sensitivity for Solving Inverse Multiple Scattering Problems in Three-dimensional Electromagnetism. Part I: One Step Method

In this paper we compute closed-form expressions for the topological derivative for three-dimensional time-harmonic electromagnetic waves for perfect conductors (Dirichlet condition), electromagnet...

[1]  F. Hettlich The domain derivative of time‐harmonic electromagnetic waves at interfaces , 2012 .

[2]  Ana Carpio,et al.  Solving inhomogeneous inverse problems by topological derivative methods , 2008 .

[3]  Abdul Wahab,et al.  Stability and Resolution Analysis of Topological Derivative Based Localization of Small Electromagnetic Inclusions , 2014, SIAM J. Imaging Sci..

[4]  Gang Bao,et al.  Numerical Reconstruction of Electromagnetic Inclusions in Three Dimensions , 2014, SIAM J. Imaging Sci..

[5]  D. Colton,et al.  The linear sampling method in inverse electromagnetic scattering theory , 2003 .

[6]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[7]  Petri Ola,et al.  Boundary integral equations for the scattering of electromagnetic waves by a homogeneous dielectric obstacle , 1993, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[8]  M. Hanke,et al.  Sampling methods for low-frequency electromagnetic imaging , 2008 .

[9]  Helmut Harbrecht,et al.  Fast Methods for Three-dimensional Inverse Obstacle Scattering Problems , 2007 .

[10]  Ralf Hiptmair,et al.  Boundary Element Methods for Maxwell Transmission Problems in Lipschitz Domains , 2003, Numerische Mathematik.

[11]  Stuart C. Hawkins,et al.  A high-order algorithm for multiple electromagnetic scattering in three dimensions , 2009, Numerical Algorithms.

[12]  Jan Sokolowski,et al.  On the Topological Derivative in Shape Optimization , 1999 .

[13]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[14]  Hongyu Liu,et al.  A global uniqueness for formally determined inverse electromagnetic obstacle scattering , 2008, 0801.2623.

[15]  M. Costabel,et al.  Shape Derivatives of Boundary Integral Operators in Electromagnetic Scattering. Part II: Application to Scattering by a Homogeneous Dielectric Obstacle , 2010, 1002.1541.

[16]  Frédérique Le Louër,et al.  Material derivatives of boundary integral operators in electromagnetism and application to inverse scattering problems , 2016 .

[17]  A. Kirsch The factorization method for Maxwell's equations , 2004 .

[18]  Dominique Lesselier,et al.  Level set methods for inverse scattering—some recent developments , 2009 .

[19]  R. Potthast Domain Derivatives in Electromagnetic Scattering , 1996 .

[20]  Claus Müller,et al.  Foundations of the mathematical theory of electromagnetic waves , 1969 .

[21]  Won-Kwang Park,et al.  Topological derivative strategy for one-step iteration imaging of arbitrary shaped thin, curve-like electromagnetic inclusions , 2012, J. Comput. Phys..

[22]  Thomas G. Dimiduk,et al.  Noninvasive Imaging of Three-Dimensional Micro and Nanostructures by Topological Methods , 2016, SIAM J. Imaging Sci..

[23]  H. Ammari,et al.  Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations , 2001 .

[24]  B. Tomas Johansson,et al.  Determining Planar Multiple Sound-Soft Obstacles from Scattered Acoustic Fields , 2010, Journal of Mathematical Imaging and Vision.

[25]  Stuart C. Hawkins,et al.  A high-order tangential basis algorithm for electromagnetic scattering by curved surfaces , 2008, J. Comput. Phys..

[26]  Ivan G. Graham,et al.  A high-order algorithm for obstacle scattering in three dimensions , 2004 .

[27]  Peter Monk,et al.  The Linear Sampling Method in Inverse Electromagnetic Scattering , 2010 .

[28]  Frédérique Le Louër,et al.  Spectrally accurate numerical solution of hypersingular boundary integral equations for three-dimensional electromagnetic wave scattering problems , 2014, J. Comput. Phys..

[29]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[30]  R. Potthast Point Sources and Multipoles in Inverse Scattering Theory , 2018 .

[31]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[32]  G. Feijoo,et al.  A new method in inverse scattering based on the topological derivative , 2004 .

[33]  R. Feijóo,et al.  Topological sensitivity analysis , 2003 .

[34]  Antoine Henrot,et al.  Variation et optimisation de formes , 2005 .

[35]  M'Barek Fares,et al.  A boundary-element solution of the Leontovitch problem , 1999 .

[36]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[37]  Bojan B. Guzina,et al.  From imaging to material identification: A generalized concept of topological sensitivity , 2007 .

[38]  María-Luisa Rapún,et al.  Topological Sensitivity for Solving Inverse Multiple Scattering Problems in Three-Dimensional Electromagnetism. Part II: Iterative Method , 2018, SIAM J. Imaging Sci..

[39]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[40]  T. Abbas,et al.  Detection of Electromagnetic Inclusions using Topological Sensitivity , 2016, 1607.03419.

[41]  Stuart C. Hawkins,et al.  A Hybrid High-Order Algorithm for Radar Cross Section Computations , 2007, SIAM J. Sci. Comput..

[42]  C. SIAMJ. THE TOPOLOGICAL ASYMPTOTIC FOR THE HELMHOLTZ EQUATION WITH DIRICHLET CONDITION ON THE BOUNDARY OF AN ARBITRARILY SHAPED HOLE , 2004 .

[43]  Houssem Haddar,et al.  On the Fréchet Derivative for Obstacle Scattering with an Impedance Boundary Condition , 2004, SIAM J. Appl. Math..

[44]  D. Mackowski,et al.  Analysis of radiative scattering for multiple sphere configurations , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[45]  Bojan B. Guzina,et al.  Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics , 2006 .

[46]  Fioralba Cakoni,et al.  Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects , 2006 .

[47]  Josselin Garnier,et al.  Stability and Resolution Analysis for a Topological Derivative Based Imaging Functional , 2012, SIAM J. Control. Optim..

[48]  Antoine Henrot,et al.  Variation et optimisation de formes : une analyse géométrique , 2005 .

[49]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[50]  O. Dorn,et al.  Level set methods for inverse scattering , 2006 .

[51]  Bessem Samet,et al.  The topological asymptotic expansion for the Maxwell equations and some applications , 2005 .

[52]  Frédérique Le Louër,et al.  A spectrally accurate method for the direct and inverse scattering problems by multiple 3D dielectric obstacles , 2018 .