Recent Developments Concerning Saint-Venant's Principle

This chapter provides an overview of the recent developments concerning Saint-Venant's principle. The task of determining, within the framework of the linear theory of elasticity, the stresses and displacements in an elastic cylinder in equilibrium, under the action of loads that arise solely from tractions applied to its plane ends has come to be called Saint- Venant's problem. Saint-Venant's construction does not permit the arbitrary preassignment of the point-by-point variation of the end tractions giving rise to these forces and moments; indeed, this variation is essentially determined as a consequence of the special assumptions made in connection with his so-called semi-inverse procedure. The early work of Saint-Venant and Boussinesq furnished the seeds from which grew a large number of more general assertions, most referring to elastic solids of arbitrary shape and many being rather imprecise, concerning the effect on stresses within the body of replacing the tractions acting over a portion of its surface by statically equivalent ones. Such propositions usually went by the name of Saint-Venunt's principle, despite the fact that Saint-Venant's original conjecture was intended to apply only to cylinders. This chapter discusses in detail about flow in a cylinder, a representation for the exact solution, and energy decay for other linear elliptic second-order problem. Linear elastostatic problems are also stated in the chapter.

[1]  J. J. Roseman Phragmen-Lindelof Theorems for some non-linear elliptic partial differential equations☆ , 1973 .

[2]  J. J. Roseman A pointwise estimate for the stress in a cylinder and its application to Saint-Venant's principle , 1966 .

[3]  Cornelius O. Horgan,et al.  Saint-Venant’s Principle and End Effects in Anisotropic Elasticity , 1977 .

[4]  B. Boley On a Dynamical Saint Venant Principle , 1960 .

[5]  E. Reissner,et al.  On the Foundations of the Theory of Thin Elastic Shells , 1958 .

[6]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[7]  James K. Knowles,et al.  On a class of conservation laws in linearized and finite elastostatics , 1972 .

[8]  J. Synge The problem of Saint Venant for a cylinder with free sides , 1945 .

[9]  J. Ericksen Special Topics in Elastostatics , 1977 .

[10]  J. J. Roseman,et al.  Saint-Venant's principle in linear two-dimensional elasticity for non-striplike domains , 1977 .

[11]  On Saint-Venant's principle in linear viscoelasticity , 1970 .

[12]  C. Horgan Inequalities of Korn and Friedrichs in elasticity and potential theory , 1975 .

[13]  S. Breuer,et al.  A bound on the strain energy for the traction problem in finite elasticity with localized non-zero surface data , 1980 .

[14]  D. Bogy Solution of the plane end problem for a semi-infinite elastic strip , 1975 .

[15]  L. Wheeler,et al.  Maximum principles and pointwise error estimates for torsion of shells of revolution , 1977 .

[16]  S. B. Dong,et al.  Edge Effects in Laminated Composite Plates , 1982 .

[17]  Spatial decay estimates for the heat equation via the maximum principle , 1976 .

[18]  R. Arridge,et al.  Effect of sample geometry on the measurement of mechanical properties of anisotropic materials , 1976 .

[19]  R. Toupin DIVISION OF ENGINEERING: SAINT‐VENANT AND A MATTER OF PRINCIPLE* , 1965 .

[20]  O. Oleinik,et al.  Boundary value problems for second order elliptic equations in unbounded domains and Saint-Venant's principle , 1977 .

[21]  V. Berdichevskiĭ,et al.  Energy methods in certain problems of damping of solutions: PMM vol. 42, n≗ 1, 1978, pp. 136–151 , 1978 .

[22]  R. Shield,et al.  Some least work principles for elastic bodies , 1966 .

[23]  J. K. Knowles,et al.  Minimum energy characterizations of Saint-Venant's solution to the relaxed Saint-Venant problem , 1966 .

[24]  E. Sternberg On Saint-Venant’s principle , 1954 .

[25]  L. Wheeler,et al.  A two-dimensional Saint-Venant principle for second-order linear elliptic equations , 1976 .

[26]  E. Sternberg,et al.  On Green's functions and Saint-Venant's principle in the linear theory of viscoelasticity , 1964 .

[27]  Kurt Friedrichs,et al.  On the Boundary-Value Problems of the Theory of Elasticity and Korn's Inequality , 1947 .

[28]  J. K. Knowles A Saint-Venant principle for a class of second-order elliptic boundary value problems , 1967 .

[29]  Generalized torsional waves and the non-axisymmetric end problem in a solid circular cylinder , 1972 .

[30]  G. Horvay Some aspects of Saint Venant's principle , 1957 .

[31]  F. John A priori estimates, geometric effects and asymptotic behavior , 1975 .

[32]  W. T. Koiter,et al.  Foundations of shell theory , 1973 .

[33]  Constantine M. Dafermos,et al.  Some remarks on Korn's inequality , 1968 .

[34]  R. W. Little,et al.  Elastostatic boundary regiou problem in solid cylinders , 1967 .

[35]  R. Toupin,et al.  Saint-Venant's Principle , 1965 .

[36]  O. Oleinik Energetic estimates analogous to the Saint-Venant principle and their applications , 1979 .

[37]  J. K. Knowles,et al.  On the exponential decay of stresses in circular elastic cylinders subject to axisymmetric self-equilibrated end loads☆ , 1969 .

[38]  Cornelius O. Horgan,et al.  The axisymmetric end problem for transversely isotropic circular cylinders , 1974 .

[39]  J. K. Knowles,et al.  The effect of nonlinearity on a principle of Saint-Venant type , 1981 .

[40]  R. W. Little,et al.  THE SEMI-INFINITE ELASTIC STRIP, , 1965 .

[41]  O. Oleinik Applications of the energy estimates analogous to Saint-Venant's principle to problems of elasticity and hydrodynamics , 1979 .

[42]  G. C. Everstine,et al.  Stress channelling in transversely isotropic elastic composites , 1971 .

[43]  P. Barham,et al.  The importance of end effects in the measurement of moduli of highly anisotropic materials , 1976 .

[44]  H. Keller Saint-Venant’s procedure and Saint-Venant’s principle , 1965 .

[45]  R. D. Gregory The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions , 1980 .

[46]  O. Oleinik,et al.  On Singularities at the boundary points and uniqueness theorems of the first boundary value problem of elasticity , 1977 .

[47]  On the strain-energy density in linear elasticity , 1973 .

[48]  Saint venant's principle in sandwich strip , 1980 .

[49]  J. N. Flavin On Knowles' version of Saint-Venant's Principle in two-dimensional elastostatics , 1974 .

[50]  O. Oleinik,et al.  The Saint-Venant principle in the two-dimensional theory of elasticity and boundary problems for a biharmonic equation in unbounded domains , 1978 .

[51]  C. Horgan Some remarks on Saint-Venant's principle for transversely isotropic composites , 1972 .

[52]  Bruno A. Boley Upper bounds and Saint-Venant’s principle in transient heat conduction , 1960 .

[53]  J. Nunziato On the spatial decay of solutions in the nonlinear theory of heat conduction , 1974 .

[54]  Cornelius O. Horgan,et al.  On Saint-Venant's principle in plane anisotropic elasticity , 1972 .

[55]  C. Horgan Plane entry flows and energy estimates for the navier-stokes equations , 1978 .

[56]  R. Arridge,et al.  The measurement of shear modulus in highly anisotropic materials: the validity of St. Venant's principle , 1975 .

[57]  F. Wan An Eigenvalue Problem for a Semi‐infinite Pretwisted Strip , 1975 .

[58]  O. Oleinik,et al.  AN ANALOGUE OF SAINT-VENANT'S PRINCIPLE AND THE UNIQUENESS OF SOLUTIONS OF BOUNDARY VALUE PROBLEMS FOR PARABOLIC EQUATIONS IN UNBOUNDED DOMAINS , 1976 .

[59]  L. Wheeler,et al.  A saint-venant principle for the gradient in the Neumann problem , 1975 .

[60]  W. A. Day Generalized torsion: The solution of a problem of Truesdell's , 1981 .

[61]  C. Horgan,et al.  Exponential decay estimates for a class of nonlinear Dirichlet problems , 1979 .

[62]  L. Wheeler,et al.  Saint-Venant's Principle and the Torsion of Thin Shells of Revolution , 1976 .

[63]  Another aspect of Saint-Venant's principle in elasticity , 1978 .

[64]  C. Horgan Eigenvalue estimates and the Trace Theorem , 1979 .

[65]  N. J. Hoff,et al.  The Applicability of Saint-Venant's Principle to Airplane Structures , 1945 .

[66]  Cornelius O. Horgan,et al.  On Korn’s Inequality for Incompressible Media , 1975 .

[67]  J. K. Knowles A note on the spatial decay of a minimal surface over a semi-infinite strip , 1977 .

[68]  N. Weck An explicit St. Venant's principle in three-dimensional elasticity , 1976 .

[69]  L. Wheeler,et al.  Exponential decay estimates for second-order quasi-linear elliptic equations , 1977 .

[70]  Cornelius O. Horgan,et al.  Spatial decay estimates for the Navier-Stokes equations with application to the problem of entry flow , 1978 .

[71]  J. Fadle Die Selbstspannungs-Eigenwertfunktionen der quadratischen Scheibe , 1940 .

[72]  W. Edelstein A spatial decay estimate for the heat equation , 1969 .

[73]  Biharmonic eigenvalue problem of the semi-infinite strip , 1957 .

[74]  R. S. Alwar Experimental verification of St. Venant's principle in a sandwich beam , 1970 .

[75]  Dynamic Saint-Venant region in a semi-infinite elastic strip , 1974 .

[76]  Antonio Palamà On Saint-Venant's principle in three-dimensional elasticity , 1976 .

[77]  Yves Biollay First boundary value problem in elasticity: Bounds for the displacements and Saint-Venant's principle , 1980 .

[78]  A. Pipkin,et al.  Stress Analysis for Fiber-Reinforced Materials , 1979 .

[79]  C. Amick Steady solutions of the Navier-Stokes equations in unbounded channels and pipes , 1977 .

[80]  R. G. Muncaster Saint-Venant's problem in nonlinear elasticity: a study of cross sections , 1979 .

[81]  James K. Knowles,et al.  The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids , 1977 .

[82]  J. Ericksen On the status of St.-Venant's solutions as minimizers of energy , 1980 .

[83]  V. Berdichevskiĭ,et al.  On the proof of the saint-venant principle for bodies of arbitrary shape: PMM vol.38, n≗5, 1974. pp. 851–864 , 1974 .

[84]  C. Horgan Saint-Venant’s Principle in Anisotropic Elasticity Theory , 1982 .

[85]  C. Amick Properties of steady Navier–Stokes solutions for certain unbounded channels and pipes , 1978 .

[86]  R. V. Mises,et al.  On Saint Venant's principle , 1945 .

[87]  Further study of Saint-Venant's principle in linear viscoelasticity , 1973 .

[88]  James K. Knowles,et al.  On the spatial decay of solutions of the heat equation , 1971 .

[89]  Cornelius O. Horgan,et al.  Eigenvalue problems associated with Korn's inequalities , 1971 .

[90]  J. J. Roseman The rate of decay of a minimal surface defined over a semiinfinite strip , 1974 .

[91]  J. J. Roseman,et al.  On Saint-Venant's Principle in three-dimensional nonlinear elasticity , 1977 .

[92]  W. E. Warren,et al.  End effect in semi-infinite transversely isotropic cylinders. , 1967 .

[93]  R. Toupin,et al.  Korn inequalities for the sphere and circle , 1960 .

[94]  Hans F. Weinberger,et al.  On Korn's inequality , 1961 .

[95]  M. Gurtin The Linear Theory of Elasticity , 1973 .

[96]  J. K. Knowles,et al.  On Saint-Venant's principle and the torsion of solids of revolution , 1966 .

[97]  C. Horgan,et al.  Saint-Venant end effects for plane deformation of sandwich strips , 1978 .

[98]  R. Shield On the stability of linear continuous systems , 1965 .

[99]  J. J. Roseman The principle of Saint-Venant in linear and non-linear plane elasticity , 1967 .

[100]  R. W. Little,et al.  The Semi-Infinite Elastic Cylinder Under Self-Equilibrated End Loading , 1970 .

[101]  E. Reissner The effect of transverse shear deformation on the bending of elastic plates , 1945 .

[102]  J. K. Knowles On Saint-Venant's principle in the two-dimensional linear theory of elasticity , 1966 .

[103]  James K. Knowles,et al.  On finite anti-plane shear for imcompressible elastic materials , 1976, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.