Hierarchical multiscale Bayesian algorithms for biomagnetic brain imaging

We present novel hierarchical multiscale Bayesian algorithms for electromagnetic brain imaging using magnetoencephalography (MEG) and electroencephalography (EEG). We define sensor data measurements using a generative probabilistic graphical model that is hierarchical across spatial scales of brain regions and voxels. We then derive Bayesian algorithms for probabilistic inference with this graphical model. Performance of algorithm shows superiority to standard benchmark algorithms and more novel algorithms both in simulations and with real data.

[1]  Nebojsa Jojic,et al.  A Graphical Model for Audiovisual Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Bhaskar D. Rao,et al.  Analysis of Empirical Bayesian Methods for Neuroelectromagnetic Source Localization , 2006, NIPS.

[3]  Kensuke Sekihara,et al.  A probabilistic algorithm for robust interference suppression in bioelectromagnetic sensor data , 2007, Statistics in medicine.

[4]  K Sekihara,et al.  NUTMEG: a neuromagnetic source reconstruction toolbox. , 2004, Neurology & clinical neurophysiology : NCN.

[5]  Julia P. Owen,et al.  Performance evaluation of the Champagne source reconstruction algorithm on simulated and real M/EEG data , 2012, NeuroImage.

[6]  Karl J. Friston,et al.  Multiple sparse priors for the M/EEG inverse problem , 2008, NeuroImage.

[7]  Julia P. Owen,et al.  Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG , 2010, NeuroImage.

[8]  R. Leahy,et al.  EEG and MEG: forward solutions for inverse methods , 1999, IEEE Transactions on Biomedical Engineering.

[9]  James O. Berger,et al.  Statistical Decision Theory and Bayesian Analysis, Second Edition , 1985 .

[10]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[11]  Robert D. Nowak,et al.  Space–time event sparse penalization for magneto-/electroencephalography , 2009, NeuroImage.

[12]  Kensuke Sekihara,et al.  Dual signal subspace projection (DSSP): a novel algorithm for removing large interference in biomagnetic measurements , 2016, Journal of neural engineering.

[13]  J. Sarvas Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. , 1987, Physics in medicine and biology.