Theoretical modeling of fatigue phenomenon in composite pipes

In this research, lifetime prediction of composite pipes subjected to internal cyclic hydrostatic pressure is considered. Progressive damage modeling technique is employed based on stiffness degradation for evaluating fatigue failure. The modeling procedure consists of three phases as stress analysis, damage evaluation and mechanical properties degradation. The applicability of the modeling in predicting fatigue lifetime of composite pipes is validated using available experimental data in literature. Due to the limited existing data on required mechanical properties of employed composite materials for investigated composite pipe, initial mechanical properties are computed and generic estimation of stiffness degradation is obtained. Then, Taguchi method is utilized to modify obtained stiffness degradation patterns in accordance with reported experimental observations. A very good agreement between theoretically predicted fatigue life time and experimental data imply on acceptable level of accuracy of fatigue modeling procedure. Finally, fatigue lifetimes of an industrial composite pipe subjected to different varying internal pressure are predicted and its long-term behavior over the span of 50 years of continuous operation is estimated as the dictated requirement by international rules and regulations.

[1]  M. Shokrieh,et al.  A unified fatigue life model based on energy method , 2006 .

[2]  D. Perreux,et al.  The effect of frequency on the fatigue performance of filament-wound pipes under biaxial loading: Experimental results and damage model , 1997 .

[3]  W. Hwang,et al.  Fatigue of Composites—Fatigue Modulus Concept and Life Prediction , 1986 .

[4]  G. H. Lemon,et al.  Reliability Prediction for Adhesive Bonds. , 1972 .

[5]  Wim Van Paepegem,et al.  Fatigue damage modeling of fibre-reinforced composite materials: Review , 2001 .

[6]  Lin Ye,et al.  On fatigue damage accumulation and material degradation in composite materials , 1989 .

[7]  S. V. Kulkarni,et al.  Evaluation and expansion of an analytical model for fatigue of notched composite laminates , 1978 .

[8]  Murat Sari,et al.  Residual failure pressures and fatigue life of filament-wound composite pipes subjected to lateral impact , 2012 .

[9]  Gerard Franklyn Fernando,et al.  Fatigue life prediction for hybrid composites , 1989 .

[10]  L. N. McCartney,et al.  Energy methods for fatigue damage modelling of laminates , 2008 .

[11]  Larry Lessard,et al.  Progressive Fatigue Damage Modeling of Composite Materials, Part II: Material Characterization and Model Verification , 2000 .

[12]  Ramesh Talreja,et al.  A continuum mechanics characterization of damage in composite materials , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  N. Amin,et al.  Ageing Effects on Burst Pressure Test of Impacted Glass Fibre Reinforcement Epoxy (GRE) Pipes , 2014 .

[14]  Isaac M Daniel,et al.  Fatigue damage mechanisms and residual properties of graphite/epoxy laminates , 1986 .

[15]  A. P. Vassilopoulos Fatigue Life Prediction of Composites and Composite Structures , 2010 .

[16]  Roham Rafiee,et al.  Simulation of fatigue failure in a full composite wind turbine blade , 2006 .

[17]  Timon Rabczuk,et al.  Finite strain fracture of plates and shells with configurational forces and edge rotations , 2013 .

[18]  M. Uyaner,et al.  Fatigue behavior of filament wound E-glass/epoxy composite tubes damaged by low velocity impact , 2014 .

[19]  Bulent Murat Icten,et al.  Environmental effect on fatigue life of glass–epoxy composite pipes subjected to impact loading , 2013 .

[20]  Lokman Gemi,et al.  Progressive fatigue failure behavior of glass/epoxy (±75)2 filament-wound pipes under pure internal pressure , 2009 .

[21]  S. Tsai,et al.  Composite Materials: Design and Applications , 2002 .

[22]  Timon Rabczuk,et al.  Damage and fracture algorithm using the screened Poisson equation and local remeshing , 2016 .

[23]  Bryan Harris,et al.  Fatigue in composites , 2003 .

[24]  J. N. Yang,et al.  Modulus reduction and fatigue damage of matrix dominated composite laminates , 1992 .

[25]  J. Berthelot,et al.  Transverse cracking and delamination in cross-ply glass-fiber and carbon-fiber reinforced plastic laminates: Static and fatigue loading , 2003 .

[26]  Kenneth Reifsnider,et al.  A cumulative damage model to predict the fatigue life of composite laminates including the effect of a fibre-matrix interphase , 1995 .

[27]  S. V. Kulkarni,et al.  Fatigue of notched fiber composite laminates - Analytical and experimental evaluation , 1977 .

[28]  Z. Hashin,et al.  A Fatigue Failure Criterion for Fiber Reinforced Materials , 1973 .

[29]  A. Akdemir,et al.  Fatigue failure analysis of surface-cracked (±45°)3 filament-wound GRP pipes under internal pressure , 2012 .

[30]  S. Tsai,et al.  Introduction to composite materials , 1980 .

[31]  A. Gibson,et al.  Effects of winding angle on the behaviour of glass/epoxy pipes under multiaxial cyclic loading , 2015 .

[32]  D. Allen,et al.  Characterization of Stiffness Loss in Crossply Laminates with Curved Matrix Cracks , 1988 .

[33]  J. Berthelot,et al.  Modelling the transverse cracking in cross-ply laminates: application to fatigue , 1999 .

[34]  H. Whitworth,et al.  A stiffness degradation model for composite laminates under fatigue loading , 1997 .

[35]  Ali Fatemi,et al.  Fatigue behavior and modeling of short fiber reinforced polymer composites: A literature review , 2015 .

[36]  C. M. Lawrence Wu Thermal and mechanical fatigue analysis of CFRP laminates , 1993 .

[37]  Kenneth Reifsnider,et al.  Damage and Damage Mechanics , 1991 .

[38]  Larry Lessard,et al.  Progressive Fatigue Damage Modeling of Composite Materials, Part I: Modeling , 2000 .

[39]  J. Halpin,et al.  Kinetic fracture models and structural reliability , 1972 .

[40]  Ranjit K. Roy,et al.  Design of Experiments Using The Taguchi Approach: 16 Steps to Product and Process Improvement , 2001 .

[41]  Manabu Takahashi,et al.  A probabilistic static fatigue model for transverse cracking in CFRP cross-ply laminates , 2009 .

[42]  M. Shokrieh,et al.  Generalized Technique for Cumulative Damage Modeling of Composite Laminates , 2007 .

[43]  Kenneth Reifsnider,et al.  The critical element model: A modeling philosophy , 1986 .

[44]  A. Akdemir,et al.  The fatigue behavior of (±55 )3 filament wound GRP pipes with a surface crack under internal pressure , 2007 .

[45]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[46]  H. Whitworth,et al.  Modeling Stiffness Reduction of Graphite/Epoxy Composite Laminates , 1987 .

[47]  M. Shokrieh,et al.  Residual stiffness in cross-ply laminates subjected to cyclic loading , 2008 .

[48]  Hui Zhang,et al.  Variational analysis of transverse cracking and local delamination in [θm/90n]s laminates , 2006 .

[49]  Ramesh Talreja,et al.  Stiffness properties of composite laminates with matrix cracking and interior delamination , 1986 .

[50]  A. Avci,et al.  Fatigue crack growth of filament wound GRP pipes with a surface crack under cyclic internal pressure , 2008 .

[51]  Lokman Gemi,et al.  Fatigue failure behavior of glass/epoxy ±55 filament wound pipes under internal pressure , 2005 .

[52]  T. Rabczuk,et al.  A meshfree thin shell method for non‐linear dynamic fracture , 2007 .

[53]  Charles E. Harris,et al.  A Cumulative Damage Model for Continuous Fiber Composite Laminates with Matrix Cracking and Interply Delaminations , 1988 .

[54]  R. A. Shenoi,et al.  A two-stage theory on fatigue damage and life prediction of composites , 2004 .

[55]  Fernand Ellyin,et al.  Fatigue Failure Model for Fibre-Reinforced Materials under General Loading Conditions , 1994 .