Finite projective planes and sharply 2-transitive subsets of finite groups

A sharply 2-transitive subset of a permutation group G acting on a set Σ is a subset R of G with the properties (1) if α, β, γ, δ ∈ Σ, α ≠ β, γ ≠ δ, R contains a unique member r with r(α) = γ, r(β) = δ, (2) 1 ∈ R, (3) the relation ~ defined on R by r ~ s if r = s or r −1 s fixes no symbol of Σ is an equivalence relation and each equivalence class is sharply transitive on Σ, that is, if α, γ ∈ Σ each class contains exactly one member r with r(α) = γ.

[1]  H. J. Ryser,et al.  The Nonexistence of Certain Finite Projective Planes , 1949, Canadian Journal of Mathematics.

[2]  J. D. King A characterization of some doubly transitive groups , 1968 .

[3]  On doubly transitive permutation groups of degree 1 + p + p2 where p is a prime number , 1968 .

[4]  Michael O'Nan A characterization ofLn (q) as a permutation group , 1972 .

[5]  Christoph Hering,et al.  Zweifach transitive Permutationsgruppen, in denen 2 die maximale Anzahl von Fixpunkten von Involutionen ist , 1968 .

[6]  On Unsolvable Groups of Degree p = 4q + 1, p and q Primes , 1967, Canadian Journal of Mathematics.

[7]  Daniel Gorenstein,et al.  The characterization of finite groups with dihedral Sylow 2-subgroups. I☆ , 1965 .

[8]  Helmut Bender,et al.  Endliche zweifach transitive Permutationsgruppen, deren Involutionen keine Fixpunkte haben , 1968 .

[9]  P. Lorimer A property of the groups Γ(,), ≥5 , 1973 .

[10]  K. Harada On some doubly transitive groups , 1971 .

[11]  P. Lorimer A Note on Groups of Ree Type , 1973, Canadian Mathematical Bulletin.

[12]  J. D. King Doubly transitive groups in which involutions fix one or three points , 1969 .

[13]  Rimhak Ree,et al.  Sur Une Famille de Groupes de Permutations Doublement Transitifs , 1964, Canadian Journal of Mathematics.

[14]  Helmut Bender,et al.  Transitive gruppen gerader ordnung, in denen jede involution genau einen punkt festläβt , 1971 .

[15]  R. Noda Doubly transitive groups in which the maximal number of fixed points of involutions is four , 1971 .

[16]  K. Harada A Characterization of the Zassenhaus Groups , 1968, Nagoya Mathematical Journal.

[17]  W. Kantor,et al.  Finite groups with a split BN-pair of rank 1. II , 1972 .

[18]  Michael Aschbacher Doubly transitive groups in which the stabilizer of two points is Abelian , 1971 .