Blood in the Brain on Susceptibility-Weighted Imaging

Abstract Intraparenchymal brain hemorrhage is not uncommon and results from a wide variety of causes ranging from trauma to tumor. Many a time, it is not possible to determine the exact cause of non-traumatic hemorrhage on conventional magnetic resonance imaging (MRI). Susceptibility-weighted imaging (SWI) is a high-resolution (3D) gradient-echo sequence. It is extremely sensitive to the inhomogeneity of the local magnetic field and highly useful in identifying the small amount of hemorrhage, which may be inapparent on other MR pulse sequences. In this review, we present different pattern of an intra-parenchymal brain hemorrhage on SWI with emphasis on differential diagnosis.

[1]  Sven Haller,et al.  Cerebral Microbleeds: Imaging and Clinical Significance. , 2018, Radiology.

[2]  A. Garg,et al.  Spectrum of findings on magnetic resonance imaging of the brain in patients with neurological manifestations of dengue fever , 2017, Radiologia brasileira.

[3]  R. Aggarwal,et al.  MRI features in dengue encephalitis: A case series in South Indian tertiary care hospital , 2017, Indian Journal of Radiology and Imaging.

[4]  F. Carletti,et al.  MRI differential diagnosis of suspected multiple sclerosis. , 2016, Clinical radiology.

[5]  M. Gurjar,et al.  Brain MRI findings in a patient with scrub typhus infection. , 2016, Neurology India.

[6]  G. Buchanan,et al.  Occult hemorrhage in children with severe ITP , 2016, American journal of hematology.

[7]  K. Ahn,et al.  Findings Regarding an Intracranial Hemorrhage on the Phase Image of a Susceptibility-Weighted Image (SWI), According to the Stage, Location, and Size , 2015 .

[8]  Z. Ahmad,et al.  Cerebral malaria: susceptibility weighted MRI , 2015 .

[9]  S. Khanna,et al.  Role of Advanced MRI Brain Sequences in Diagnosing Neurological Complications of Scrub Typhus , 2015, Journal of Clinical Imaging Science.

[10]  Mauricio Castillo,et al.  Imaging spectrum of CNS vasculitis. , 2014, Radiographics : a review publication of the Radiological Society of North America, Inc.

[11]  Rajiv Gupta,et al.  Susceptibility Weighted Imaging: Physics and Clinical applications in Neuroimaging at 3 Tesla , 2014 .

[12]  H. Zeng,et al.  Clinical and MRI features of neurological complications after influenza A (H1N1) infection in critically ill children , 2013, Pediatric Radiology.

[13]  C. Das,et al.  MRI in H1N1 Encephalitis , 2013, The Indian Journal of Pediatrics.

[14]  A. Haktanır MR Imaging in Novel Influenza A(H1N1)-Associated Meningoencephalitis , 2010, American Journal of Neuroradiology.

[15]  Bejoy Thomas,et al.  Principles, techniques, and applications of T2*-based MR imaging and its special applications. , 2009, Radiographics : a review publication of the Radiological Society of North America, Inc.

[16]  J. Boardman,et al.  Hemorrhage in Posterior Reversible Encephalopathy Syndrome: Imaging and Clinical Features , 2009, American Journal of Neuroradiology.

[17]  E. Haacke,et al.  Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications, Part 1 , 2008, American Journal of Neuroradiology.

[18]  Z. Wu,et al.  Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications, Part 2 , 2008, American Journal of Neuroradiology.

[19]  Eric E. Smith,et al.  MR Imaging Detection of Cerebral Microbleeds: Effect of Susceptibility-Weighted Imaging, Section Thickness, and Field Strength , 2008, American Journal of Neuroradiology.

[20]  F. Khan,et al.  Clinical and radiological features of intracerebral haemorrhage in hypertensive patients. , 2008, JPMA. The Journal of the Pakistan Medical Association.

[21]  D. V. von Cramon,et al.  Comparative magnetic resonance imaging at 1.5 and 3 Tesla for the evaluation of traumatic microbleeds. , 2007, Journal of neurotrauma.

[22]  G. Tung,et al.  MRI of cerebral microhemorrhages. , 2007, AJR. American journal of roentgenology.

[23]  S. John,et al.  Primary angiitis of the central nervous system: MRI features and clinical presentation. , 2003, Australasian radiology.

[24]  Nils Peters,et al.  Cerebral Microbleeds in CADASIL: A Gradient-Echo Magnetic Resonance Imaging and Autopsy Study , 2002, Stroke.

[25]  M. Ferrari,et al.  Cerebral microbleeds in CADASIL , 2001, Neurology.

[26]  P Kapeller,et al.  Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. , 1999, AJNR. American journal of neuroradiology.

[27]  M. S. Lee,et al.  Intracranial hemorrhage associated with idiopathic thrombocytopenic purpura: Report of seven patients and a meta-analysis , 1998, Neurology.

[28]  S. H. Lee,et al.  Scrub typhus: clinical, pathologic, and imaging findings. , 2007, Radiographics : a review publication of the Radiological Society of North America, Inc.

[29]  G. deVeber,et al.  MR imaging and angiography of primary CNS vasculitis of childhood. , 2006, AJNR. American journal of neuroradiology.

[30]  N. Yamada,et al.  Intracranial calcification on gradient-echo phase image: depiction of diamagnetic susceptibility. , 1996, Radiology.

[31]  R. Adams,et al.  Vascular diseases of the brain. , 1947, Bulletin. New England Medical Center.