Multiresolution modeling for scientific visualization

Interactive visualization and exploration of large-scale scientific data sets is an important application for the analysis of data obtained from computational fluid dynamics (CFD), computerized tomography (CT), and laser-range scans. These data sets are typically defined by discrete samples, either aligned on regular grids or randomly scattered in space, describing an underlying shape or a volumetric field function. Examples are isosurfaces and shock waves in CFD, height maps for terrain data, and three-dimensional scanned objects in reverse engineering. Starting with discrete samples, a continuous geometric model is built, that closely approximates an underlying shape. Multiresolution representations are essential for displaying large-scale surface and volume models within minimal computation time, satisfying certain error bounds or bounds on complexity. This dissertation is concerned with the efficient construction of multiresolution surface and volume models for high-quality approximation of scientific data. We present two adaptive clustering methods used for scattered data approximation. The first method uses hierarchical Voronoi diagrams and Sibson's interpolant for multiresolution surface modeling. The second approach is based on binary space-partition trees and quadratic polynomial approximation used as intermediate representation for the construction of triangulated surfaces. For multiresolution representation and compression of data sets defined on regular grids, we construct biorthogonal lifted B-spline wavelets with small filters. A major contribution is the construction of new symmetric lifted B-spline subdivision-surface wavelets with finite filters for representing surfaces of arbitrary topology defined by irregular polygonal base meshes. Regular mesh subdivision results in smooth limit surfaces with the option of sharp features and boundary curves represented by modified subdivision rules. These new wavelet constructions are used for approximation and compression of isosurfaces taken from a high-resolution turbulent-mixing hydrodynamics simulation. A similar approach is used to define wavelets on planar tessellations.

[1]  C. D. Boor,et al.  On Calculating B-splines , 1972 .

[2]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[3]  Bianca Falcidieno,et al.  A Delaunay-Based Method for Surface Approximation , 1983, Eurographics.

[4]  Arne Maus,et al.  Delaunay triangulation and the convex hull ofn points in expected linear time , 1984, BIT.

[5]  Leila De Floriani,et al.  A hierarchical structure for surface approximation , 1984, Comput. Graph..

[6]  Wolfgang Böhm,et al.  Triangular spline algorithms , 1985, Comput. Aided Geom. Des..

[7]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[8]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[9]  Ian H. Witten,et al.  Arithmetic coding for data compression , 1987, CACM.

[10]  A. A. Ball,et al.  Conditions for tangent plane continuity over recursively generated B-spline surfaces , 1988, TOGS.

[11]  Leila De Floriani,et al.  Constrained Delaunay triangulation for multiresolution surface description , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[12]  Gregory M. Nielson,et al.  A survey of applications of an affine invariant norm , 1989 .

[13]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Gerald E. Farin,et al.  Surfaces over Dirichlet tessellations , 1990, Comput. Aided Geom. Des..

[15]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[16]  Nira Dyn,et al.  Algorithms for the construction of data dependent triangulations , 1990 .

[17]  Tony DeRose,et al.  Generalized B-spline surfaces of arbitrary topology , 1990, SIGGRAPH.

[18]  Jeffrey L. Brown,et al.  Vertex based data dependent triangulations , 1991, Comput. Aided Geom. Des..

[19]  Larry L. Schumaker,et al.  Least Squares Fitting by Linear Splines on Data Dependent Triangulations , 1991, Curves and Surfaces.

[20]  E. F. D’Azevedo,et al.  Optimal Triangular Mesh Generation by Coordinate Transformation , 1991, SIAM J. Sci. Comput..

[21]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[22]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[23]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[24]  H. Seidel Representing piecewise polynomials as linear combinations of multivariate B-splines , 1992 .

[25]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[26]  C. Micchelli,et al.  Blossoming begets B -spline bases built better by B -patches , 1992 .

[27]  S. Rippa Long and thin triangles can be good for linear interpolation , 1992 .

[28]  Dani Lischinski,et al.  Combining hierarchical radiosity and discontinuity meshing , 1993, SIGGRAPH.

[29]  Jerome M. Shapiro,et al.  Embedded image coding using zerotrees of wavelet coefficients , 1993, IEEE Trans. Signal Process..

[30]  Tony DeRose,et al.  Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.

[31]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[32]  Wolfgang Böhm,et al.  Geometric concepts for geometric design , 1993 .

[33]  Larry L. Schumaker,et al.  Computing optimal triangulations using simulated annealing , 1993, Comput. Aided Geom. Des..

[34]  Robert J. Moorhead,et al.  Progressive transmission of scientific data using biorthogonal wavelet transform , 1994, Proceedings Visualization '94.

[35]  Michael Margaliot,et al.  Piecewise-linear surface approximation from noisy scattered samples , 1994, Proceedings Visualization '94.

[36]  Charles T. Loop A G1 triangular spline surface of arbitrary topological type , 1994, Comput. Aided Geom. Des..

[37]  W. Sweldens The Lifting Scheme: A Custom - Design Construction of Biorthogonal Wavelets "Industrial Mathematics , 1996 .

[38]  Wim Sweldens,et al.  An Overview of Wavelet Based Multiresolution Analyses , 1994, SIAM Rev..

[39]  E. Quak,et al.  Decomposition and Reconstruction Algorithms for Spline Wavelets on a Bounded Interval , 1994 .

[40]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[41]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[42]  John F. Hughes,et al.  Modeling surfaces of arbitrary topology using manifolds , 1995, SIGGRAPH.

[43]  Markus H. Gross,et al.  Fast Multiresolution Surface Meshing , 1995, IEEE Visualization.

[44]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[45]  P. Hanrahan,et al.  Wavelet Methods for Radiance Computations , 1995 .

[46]  Peter Schröder,et al.  Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.

[47]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[48]  David Salesin,et al.  Wavelets for computer graphics: theory and applications , 1996 .

[49]  Wolfgang Dahmen,et al.  Local Decomposition of Refinable Spaces and Wavelets , 1996 .

[50]  Marc Levoy,et al.  Fitting smooth surfaces to dense polygon meshes , 1996, SIGGRAPH.

[51]  Leif Kobbelt,et al.  Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.

[52]  Martin Rumpf,et al.  A variational approach to optimal meshes , 1996 .

[53]  Hans Hagen,et al.  Surface design using triangular patches , 1996, Comput. Aided Geom. Des..

[54]  Kenneth I. Joy,et al.  Free-form deformations with lattices of arbitrary topology , 1996, SIGGRAPH.

[55]  Amitabh Varshney,et al.  Dynamic view-dependent simplification for polygonal models , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[56]  Peter Schröder,et al.  Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.

[57]  Jörg Peters,et al.  Curvature continuous spline surfaces over irregular meshes , 1996, Comput. Aided Geom. Des..

[58]  Matthias Eck,et al.  Automatic reconstruction of B-spline surfaces of arbitrary topological type , 1996, SIGGRAPH.

[59]  Daniel Cohen-Or,et al.  Incremental view-dependent multiresolution triangulation of terrain , 1997, Proceedings The Fifth Pacific Conference on Computer Graphics and Applications.

[60]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[61]  Baining Guo,et al.  Surface reconstruction: from points to splines , 1997, Comput. Aided Des..

[62]  Bernd Hamann,et al.  An Edge-Preserving, Data-Dependent Triangulation Scheme for Hierarchical Rendering , 1997, Scientific Visualization Conference (dagstuhl '97).

[63]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[64]  Bernd Hamann,et al.  Cluster-Based Generation of Hierarchical Surface Models , 1997, Scientific Visualization Conference (dagstuhl '97).

[65]  Gregory M. Nielson,et al.  Haar wavelets over triangular domains with applications to multiresolution models for flow over a sphere , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[66]  Jörg Peters,et al.  The simplest subdivision scheme for smoothing polyhedra , 1997, TOGS.

[67]  Mark A. Duchaineau,et al.  ROAMing terrain: Real-time Optimally Adapting Meshes , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[68]  Baining Guo,et al.  Surface Reconstruction Using Alpha Shapes , 1997, Comput. Graph. Forum.

[69]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[70]  Chandrajit L. Bajaj,et al.  Reconstructing Surfaces and Functions on Surfaces from Unorganized Three-Dimensional Data , 1997, Algorithmica.

[71]  I. Daubechies,et al.  Factoring wavelet transforms into lifting steps , 1998 .

[72]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[73]  Hugues Hoppe Smooth view-dependent level-of-detail control and its application to terrain rendering , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[74]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[75]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[76]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[77]  I. Daubechies,et al.  Wavelet Transforms That Map Integers to Integers , 1998 .

[78]  Peter Lindstrom,et al.  Fast and memory efficient polygonal simplification , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[79]  David A. Yuen,et al.  Solving PDEs using wavelets , 1998 .

[80]  Ian H. Witten,et al.  Arithmetic coding revisited , 1998, TOIS.

[81]  Georges-Pierre Bonneau,et al.  Multiresolution Analysis on Irregular Surface Meshes , 1998, IEEE Trans. Vis. Comput. Graph..

[82]  Philipp Ziegler,et al.  Wavelet radiosity in computer graphics , 1998 .

[83]  Peter Schröder,et al.  A multiresolution framework for variational subdivision , 1998, TOGS.

[84]  Marshall W. Bern,et al.  A new Voronoi-based surface reconstruction algorithm , 1998, SIGGRAPH.

[85]  Bernd Hamann,et al.  Constructing Hierarchies for Triangle Meshes , 1998, IEEE Trans. Vis. Comput. Graph..

[86]  Tom Lyche,et al.  Mathematical methods for curves and surfaces II : Lillehammer, 1997 , 1998 .

[87]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[88]  Michael Garland,et al.  Multiresolution Modeling for Fast Rendering , 1999 .

[89]  Hans-Peter Seidel,et al.  A Shrink Wrapping Approach to Remeshing Polygonal Surfaces , 1999, Comput. Graph. Forum.

[90]  Georges-Pierre Bonneau,et al.  Optimal triangular Haar bases for spherical data , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[91]  B. Hamann,et al.  Generalized b-spline subdivision-surface wavelets and lossless compression , 1999 .

[92]  Bernd Hamann,et al.  Surface Reconstruction Using Adaptive Clustering Methods , 1999, Geometric Modelling.

[93]  Jindong Chen,et al.  Automatic Reconstruction of 3D CAD Models from Digital Scans , 1999, Int. J. Comput. Geom. Appl..

[94]  Gabriel Taubin,et al.  The ball-pivoting algorithm for surface reconstruction , 1999, IEEE Transactions on Visualization and Computer Graphics.

[95]  B. C. Curtis,et al.  Very High Resolution Simulation of Compressible Turbulence on the IBM-SP System , 1999, ACM/IEEE SC 1999 Conference (SC'99).

[96]  Peter Lindstrom,et al.  Evaluation of Memoryless Simplification , 1999, IEEE Trans. Vis. Comput. Graph..

[97]  Bernd Hamann,et al.  On piecewise linear approximation of quadratic functions. , 2000 .

[98]  Peter Schröder,et al.  Normal meshes , 2000, SIGGRAPH.

[99]  Bernd Hamann,et al.  Hierarchical Data Representations Based on Planar Voronoi Diagrams , 2000, VisSym.

[100]  Bernd Hamann,et al.  Bicubic subdivision-surface wavelets for large-scale isosurface representation and visualization , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[101]  Bernd Hamann,et al.  Piecewise optimal triangulation for the approximation of scattered data in the plane , 2000, Comput. Aided Geom. Des..

[102]  Henning Biermann,et al.  Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.

[103]  Duchaineau,et al.  Wavelets on Planar Tesselations , 2000 .

[104]  W. Dahmen Wavelet methods for PDEs — some recent developments , 2001 .

[105]  Bernd Hamann,et al.  On Simulated Annealing and the Construction of Linear Spline Approximations for Scattered Data , 2001, IEEE Trans. Vis. Comput. Graph..

[106]  Fujio Yamaguchi,et al.  Computer-Aided Geometric Design , 2002, Springer Japan.